首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   10篇
化学   118篇
晶体学   1篇
力学   3篇
数学   6篇
物理学   21篇
  2024年   1篇
  2023年   3篇
  2022年   11篇
  2021年   10篇
  2020年   9篇
  2019年   5篇
  2018年   8篇
  2017年   2篇
  2016年   8篇
  2015年   2篇
  2014年   6篇
  2013年   10篇
  2012年   10篇
  2011年   14篇
  2010年   8篇
  2009年   4篇
  2008年   9篇
  2007年   4篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
1.
Recently available ultrahigh magnetic fields offer new opportunities for studies of quadrupole nuclei in biological solids because of the dramatic enhancement in sensitivity and resolution associated with the reduction of second-order quadrupole interactions. Here, we present a new approach for understanding the function and energetics of ion solvation in channels using solid-state 17O NMR spectroscopy of single-site 17O-labeled gramicidin A. The chemical shift and quadrupole coupling parameters obtained in powder samples of lyophilized material are similar to those shown in the literature for carbonyl oxygens. In lipid bilayers, it is found that the carbonyl 17O anisotropic chemical shift of Leu10, one of the three carbonyl oxygens contributing to the ion binding site in gramicidin A, is altered by 40 ppm when K+ ion binds to the channel, demonstrating a high sensitivity to such interactions. Moreover, considering the large breadth of the carbonyl 17O chemical shift (>500 ppm), the recording of anisotropic 17O chemical shifts in bilayers aligned with respect to magnetic field B0 offers high-quality structural restraints similar to 15N and 13C anisotropic chemical shifts.  相似文献   
2.
Development of simple and reliable protocols for the synthesis of organically soluble catalytically active metal nanoparticles is an important aspect of research in nanomaterials. We demonstrate herein the formation of Pd nanoparticles by reduction of aqueous Pd(NO(3))(2) by photoexcited Keggin ions (phosphotungstate anions). This results in the formation of Pd nanoparticles capped with with Keggin ions that render the particles negatively charged. The Keggin ion capped Pd nanoparticles may then be phase transferred into nonpolar organic solvents such as toluene by electrostatic complexation with cationic surfactants such as octadecylamine at the liquid-liquid interface. This results in a new class of catalyst wherein both the Pd core and Keggin ion shell may be used in a range of catalytic reactions leading to a truly multifunctional catalyst dispersible in organic solvents.  相似文献   
3.
The electrolysis of water for hydrogen generation has shown immense promise as an energy conversion technology for the green energy economy.Two concurrently occ...  相似文献   
4.
Pentacyclic triterpenoids α- and β-amyrin possess a wide range of biological and pharmacological activities. High structural similarity between these two structural isomers makes their chromatographic separation an ineffective and tedious choice. In this study, Candida rugosa lipase catalyzed separation protocol for the isolation of individual isomers has been developed. In the presence of vinyl acetate as the acyl donor, Candida rugosa lipase carried out acetylation of β-amyrin more efficiently as compared to α-amyrin leading to a kinetic separation. The conditions of transesterification reaction were optimized systematically, which was utilized to separate α- and β-amyrin from a mixture obtained from the latex of Plumeria obtusa.  相似文献   
5.
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people’s lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity.  相似文献   
6.
The [FeIV(O)(Me3NTB)]2+ (Me3NTB=tris[(1-methyl-benzimidazol-2-yl)methyl]amine) complex 1 has been shown by Mössbauer spectroscopy to have an S=1 ground state at 4 K, but is proposed to become an S=2 trigonal-bipyramidal species at higher temperatures based on a DFT model to rationalize its very high C−H bond-cleavage reactivity. In this work, 1H NMR spectroscopy was used to determine that 1 does not have C3-symmetry in solution and is not an S=2 species. Our results show that 1 is unique among nonheme FeIV=O complexes in retaining its S=1 spin state and high reactivity at 193 K, providing evidence that S=1 FeIV=O complexes can be as reactive as their S=2 counterparts. This result emphasizes the need to identify factors besides the ground spin state of the FeIV=O center to rationalize nonheme oxoiron(IV) reactivity.  相似文献   
7.
The development of organic photoluminescent materials, which show promising roles as catalysts, sensors, organic light-emitting diodes, logic gates, etc., is a major demand and challenge for the global scientific community. In this context, a photoclick polymerization method is adopted for the growth of a unique photoluminescent three-dimensional (3D) polymer film, E, as a model system that shows emission tunability over the range 350–650 nm against the excitation range 295–425 nm. The DFT analysis of energy calculations and π-stacking supports the spectroscopic observations for the material exhibiting a broad range of emission owing to newly formed chromophoric units within the film. Full polarization spectroscopic Mueller matrix studies were employed to extract and quantify the molecular orientational order of both the ground (excitation) and excited (emission) state anisotropies through a set of newly defined parameters, namely the fluorescence diattenuation and fluorescence polarizance. The information contained in the recorded fluorescence Mueller matrix of the organic polymer material provided a useful way to control the spectral intensity of emission by using pre- and post-selection of polarization states. The observation was based on the assumption that the longer lifetime of the excited dipolar orientation is attributed to the compactness of the film.  相似文献   
8.
Efforts to synthesize degradable polymers from renewable resources are deterred by technical and economic challenges; especially, the conversion of natural building blocks into polymerizable monomers is inefficient, requiring multistep synthesis and chromatographic purification. Herein we report a chemoenzymatic process to address these challenges. An enzymatic reaction system was designed that allows for regioselective functional group transformation, efficiently converting glucose into a polymerizable monomer in quantitative yield, thus removing the need for chromatographic purification. With this key success, we further designed a continuous, three-step process, which enabled the synthesis of a sugar polymer, sugar poly(orthoester), directly from glucose in high yield (73 % from glucose). This work may provide a proof-of-concept in developing technically and economically viable approaches to address the many issues associated with current petroleum-based polymers.  相似文献   
9.
Four homodinuclear complexes of Ni(II)-Ni(II), Cu(II)-Cu(II), Co(II)-Co(II) and Co(III)-Co(II) and five heterodinuclear complexes of Co(III)-Zn(II), Co(III)-Cu(II), Co(III)-Ni(II), Cu(II)-Zn(II) and Zn(II)-Cu(II) with the octadentate Schiff base compartmental ligand 1,8-N-bis(3-carboxy)disalicylidene-3,6-diazaoctane-1,8-diamine (H4fsatrien) have been synthesized. The complexes have been characterized with the help of elemental analyses, molecular weights, molar conductances, magnetic susceptibilities and spectroscopic (UV-vis, IR, ESR) data. Cryomagnetic data also helped to elucidate the structural features of the Cu(II) complexes.  相似文献   
10.
Gastric cancer is one of the most common cancers of the gastrointestinal tract. Although surgery is the primary treatment, serious maladies that dissipate to other parts of the body may require chemotherapy. As there is no effective procedure to treat stomach cancer, natural small molecules are a current focus of research interest for the development of better therapeutics. Chemotherapy is usually used as a last resort for people with advanced stomach cancer. Anti-colon cancer chemotherapy has become increasingly effective due to drug resistance and sensitivity across a wide spectrum of drugs. Naturally-occurring substances have been widely acknowledged as an important project for discovering innovative medications, and many therapeutic pharmaceuticals are made from natural small molecules. Although the beneficial effects of natural products are as yet unknown, emerging data suggest that several natural small molecules could suppress the progression of stomach cancer. Therefore, the underlying mechanism of natural small molecules for pathways that are directly involved in the pathogenesis of cancerous diseases is reviewed in this article. Chemotherapy and molecularly-targeted drugs can provide hope to colon cancer patients. New discoveries could help in the fight against cancer, and future stomach cancer therapies will probably include molecularly formulated drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号