首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   5篇
  国内免费   1篇
化学   91篇
数学   2篇
物理学   15篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   9篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   10篇
  2007年   7篇
  2006年   10篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1995年   4篇
  1994年   1篇
  1991年   2篇
  1978年   1篇
  1976年   6篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
  1941年   1篇
排序方式: 共有108条查询结果,搜索用时 515 毫秒
1.
Periodical calculations of Zn(II) metal cation stabilization in cationic positions with distantly placed aluminium ions has been performed for high-silica ferrierite. It was found that decrease of the stabilization energy at large distances between Al ions (more than 10 Å) is about of 2 eV in comparison with nearest possible position of two Al ions in the zeolite lattice and weekly depended on following increase of the Al-Al distance. Main changes in stabilization energy occured within a 3-Å interval of these distances. Only for the localizations of both Al ions in one zeolite ring zinc cationic form is more stable than hydrogen form.  相似文献   
2.
This paper presents a detailed study of a water adlayer adsorbed on Pt(111) and Rh(111) surfaces using periodic density functional theory methods. The interaction between the metal surface and the water molecules is assessed from molecular dynamics simulation data and single point electronic structure calculations of selected configurations. It is argued that the electron bands around the Fermi level of the metal substrate extend over the water adlayer. As a consequence in the presence of the water layer the surface as a whole still maintains its metallic conductivity-a result of a crucial importance for understanding the process of electron transfer through the water/metal interface and electrochemical reactions in particular. Our results also indicate that there exists a weak bond between the hydrogen of the water and the Rh metal atoms as opposed to the widespread (classical) models based on purely repulsive interaction. This suggests that the commonly used classical interactions potentials adopted for large scale molecular dynamics simulations of water/metal interfaces may need revision. Two adsorption models of water on transition metals with the OH bonds pointing towards or away of the surface are also examined. It is shown that due to the very close values of their adsorption energies one should consider the real structure of water on the surface as a mixture of these simple "up" and "down" models. A model for the structure of the adsorbed water layer on Rh(111) is proposed in terms of statistical averages from molecular dynamics simulations.  相似文献   
3.
The barriers to phenyl rotation in 2-lithio-2-phenyl-cis-4,6-dimethyl-, 2-lithio-2-phenyl-4,4,6-trimethyl- and 2-lithio-2-phenyl-trans-4,6-dimethyl-1,3-dithiane are compared in tetrahydrofuran (THF) and hexamethylphosphortriamide (HMPA). In the first two cases, the barriers in THF are lower than those in HMPA, presumably because the lithio compound exists as a tight ion pair in THF but as a solvent-separated ion pair (with more delocalization of charge into the phenyl ring) in HMPA. However, in the trans-4,6-dimethyl compound the barriers are the same in the two solvents and nearly equal to the barriers for ring reversal. It is concluded that in this compound the rate-determining step for phenyl rotation may actually be ring reversal, at least in solvent HMPA.  相似文献   
4.
Hydrogen adsorption on Mo[bond]S, Co[bond]Mo[bond]S, and Ni[bond]Mo[bond]S (10 1 macro 0) surfaces has been modeled by means of periodic DFT calculations taking into account the gaseous surrounding of these catalysts in working conditions. On the stable Mo[bond]S surface, only six-fold coordinated Mo cations are present, whereas substitution by Co or Ni leads to the creation of stable coordinatively unsaturated sites. On the stable MoS(2) surface, hydrogen dissociation is always endothermic and presents a high activation barrier. On Co[bond]Mo[bond]S surfaces, the ability to dissociate H(2) depends on the nature of the metal atom and the sulfur coordination environment. As an adsorption center, Co strongly favors molecular hydrogen activation as compared to the Mo atoms. Co also increases the ability of its sulfur atom ligands to bind hydrogen. Investigation of surface acidity using ammonia as a probe molecule confirms the crucial role of sulfur basicity on hydrogen activation on these surfaces. As a result, Co[bond]Mo[bond]S surfaces present Co[bond]S sites for which the dissociation of hydrogen is exothermic and weakly activated. On Ni[bond]Mo[bond]S surfaces, Ni[bond]S pairs are not stable and do not provide for an efficient way for hydrogen activation. These theoretical results are in good agreement with recent experimental studies of H(2)[bond]D(2) exchange reactions.  相似文献   
5.
6.
Abstract

The outstanding performance of conventional thermosets arising from their covalently cross-linked networks directly results in a limited recyclability. The available commercial or close-to-commercial techniques facing this challenge can be divided into mechanical, thermal, and chemical processing. However, these methods typically require a high energy input and do not take the recycling of the thermoset matrix itself into account. Rather, they focus on retrieving the more valuable fibers, fillers, or substrates. To increase the circularity of thermoset products, many academic studies report potential solutions which require a reduced energy input by using degradable linkages or dynamic covalent bonds. However, the majority of these studies have limited potential for industrial implementation. This review aims to bridge the gap between the industrial and academic developments by focusing on those which are most relevant from a technological, sustainable and economic point of view. An overview is given of currently used approaches for the recycling of thermoset materials, the development of novel inherently recyclable thermosets and examples of possible applications that could reach the market in the near future.  相似文献   
7.
8.
The preparation and properties are reported of M(CO)4(RNSNR) (M = Cr, Mo, W; R = i-Pr, t-Bu), in which the ligand is bidentate and in the trans,trans configuration, and of M(CO)5(RNSNR) (M = CR, W; R = Et, i-Pr) in which the sulfurdiimine is monodentate and in the cis,trans configuration. In both cases the ligand is linked to the metal atom via the N-atom(s). With M(CO)5(MeNSNMe) a second isomer is found in which the sulfurdiimine is probably bonded via the S-atom to the metal. All the pentacarbonyl compounds are fluxional; this is attributed to a gliding movement of the metal atom along the NSN system.Both W(CO)4(t-BuNSN-tBu) and W(CO)5(MeNSNMe) show vibronic coupling of metal to ligand charge transfer transitions with sulfurdiimine vibrations, as shown with Resonance Raman, but only for W(CO)5(MeNSNMe) also with the symmetric mode of the equatorial carbonyl groups. The metalsulfurdiimine bond appears to be weak for M(CO)5(RNSNR), but strong for M(CO)4(RNSNR).  相似文献   
9.
10.
Multiphase flow metering with operationally robust, low-cost real-time systems that provide accuracy across a broad range of produced volumes and fluid properties, is a requirement across a range of process industries, particularly those concerning petroleum. Especially the wide variety of multiphase flow profiles that can be encountered in the field provides challenges in terms of metering accuracy. Recently, low-field magnetic resonance (MR) measurement technology has been introduced as a feasible solution for the petroleum industry. In this work, we study two phase air-water horizontal flows using MR technology. We show that low-field MR technology applied to multiphase flow has the capability to measure the instantaneous liquid holdup and liquid flow velocity using a constant gradient low flip angle CPMG (LFA-CPMG) pulse sequence. LFA-CPMG allows representative sampling of the correlations between liquid holdup and liquid flow velocity, which allows multiphase flow profiles to be characterized. Flow measurements based on this method allow liquid flow rate determination with an accuracy that is independent of the multiphase flow profile observed in horizontal pipe flow for a wide dynamic range in terms of the average gas and liquid flow rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号