首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
数学   3篇
  2019年   3篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
We consider the uniqueness of solution (i.e., nonsingularity) of systems of r generalized Sylvester and ?‐Sylvester equations with n×n coefficients. After several reductions, we show that it is sufficient to analyze periodic systems having, at most, one generalized ?‐Sylvester equation. We provide characterizations for the nonsingularity in terms of spectral properties of either matrix pencils or formal matrix products, both constructed from the coefficients of the system. The proposed approach uses the periodic Schur decomposition and leads to a backward stable O(n3r) algorithm for computing the (unique) solution.  相似文献   
2.
Hermitian and unitary matrices are two representatives of the class of normal matrices whose full eigenvalue decomposition can be stably computed in quadratic computing complexity once the matrix has been reduced, for instance, to tridiagonal or Hessenberg form. Recently, fast and reliable eigensolvers dealing with low‐rank perturbations of unitary and Hermitian matrices have been proposed. These structured eigenvalue problems appear naturally when computing roots, via confederate linearizations, of polynomials expressed in, for example, the monomial or Chebyshev basis. Often, however, it is not known beforehand whether or not a matrix can be written as the sum of a Hermitian or unitary matrix plus a low‐rank perturbation. In this paper, we give necessary and sufficient conditions characterizing the class of Hermitian or unitary plus low‐rank matrices. The number of singular values deviating from 1 determines the rank of a perturbation to bring a matrix to unitary form. A similar condition holds for Hermitian matrices; the eigenvalues of the skew‐Hermitian part differing from 0 dictate the rank of the perturbation. We prove that these relations are linked via the Cayley transform. Then, based on these conditions, we identify the closest Hermitian or unitary plus rank k matrix to a given matrix A, in Frobenius and spectral norm, and give a formula for their distance from A. Finally, we present a practical iteration to detect the low‐rank perturbation. Numerical tests prove that this straightforward algorithm is effective.  相似文献   
3.
Numerical Algorithms - A quasi-Toeplitz (QT) matrix is a semi-infinite matrix of the kind $A=T(a)+E$ where $T(a)=(a_{j-i})_{i,j\in \mathbb Z^{+}}$ , $E=(e_{i,j})_{i,j\in \mathbb Z^{+}}$ is compact...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号