首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   6篇
  国内免费   1篇
化学   122篇
晶体学   1篇
力学   7篇
数学   18篇
物理学   69篇
  2021年   2篇
  2020年   2篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   4篇
  2012年   5篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   17篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1992年   2篇
  1991年   4篇
  1988年   3篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1978年   5篇
  1976年   2篇
  1975年   7篇
  1974年   3篇
  1940年   2篇
  1938年   2篇
  1937年   2篇
  1935年   2篇
  1933年   6篇
  1932年   2篇
  1930年   3篇
  1929年   2篇
  1927年   2篇
  1926年   3篇
  1923年   1篇
  1917年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
1.
2.
The structure of a catalytic intermediate with important implications for the interpretation of the stereochemical outcome of the palladium complex catalyzed allylic substitution with phosphino-oxazoline (PHOX) ligands is determined by liquid state NMR. The complex displays a novel structure that is highly distorted compared with other palladium eta2-olefin complexes known so far. The structure has been determined from nuclear overhauser data (NOE), scalar coupling constants, and long range projection angle restraints derived from dipole dipole cross-correlated relaxation of multiple quantum coherence. The latter restraints have been implemented into a distance geometry protocol. The projection angle restraints yield a higher precision in the determination of the relative orientation of the two molecular moieties and are essential to provide an exact structural definition of the olefinic part of the catalytic intermediate with respect to the ligand.  相似文献   
3.
4.
In this communication, we demonstrate the feasibility of 1H detection in MAS solid-state NMR for a microcrystalline, uniformly 2H,15N-labeled sample of a SH3 domain of chicken alpha-spectrin, using pulsed field gradients for suppression of water magnetization. Today, B0 gradients are employed routinely in solution-state NMR for coherence order selection and solvent suppression. We suggest to use gradients to purge water magnetization which cannot be suppressed using conventional water suppression schemes. The achievable gain in sensitivity for 1H detection is in the order of 5 compared to the 15N detected version of the experiment (at a MAS rotation frequency of 13.5 kHz). We expect that this labeling concept which achieves high sensitivity due to 1H detection, in combination with the possibility to measure long range 1H-1H distances as we have shown previously, to be a useful tool for the determination of protein structures in the solid state.  相似文献   
5.
6.
Self-assembling DNA tiling lattices represent a versatile system for nanoscale construction. Self-assembled DNA arrays provide an excellent template for spatially positioning other molecules with increased relative precision and programmability. Here we report an experiment using a linear array of DNA triple crossover tiles to controllably template the self-assembly of single-layer or double-layer linear arrays of streptavidin molecules and streptavidin-conjugated nanogold particles through biotin-streptavidin interaction. The organization of streptavidin and its conjugated gold nanoparticles into periodic arrays was visualized by atomic force microscopy and scanning electron microscopy.  相似文献   
7.
1-(2′-Deoxy-2′-fluororibofuranosyl)pyrimidines were synthesized and incorporated into an RNA oligonucleotide to give 5′-r[CfGCf(UfUfCfG)GCfG]-3′ (Cf: short form of C = 2′-deoxy-2′-fluorocytidine; Uf: short form of U = 2′-deoxy-2′-fluorouridine). The oligomer was investigated by means of UV, CD, and NMR spectroscopy to address the question of how F-labels can substitute 13C-labels in the ribose ring. Through-space (NOE) and through-bond (scalar couplings) experiments were performed that make use of the ameliorated chemical-shift dispersion induced by 19F as an alternative heteronucleus. A comparison of the structures of fluorinated vs. unmodified oligomer is given. It turns out that the fluorinated oligonucleotide exists in a 14:3 equilibrium between a hairpin and a duplex conformation, in contrast to the unmodified oligonucleotide which predominantly adopts the hairpin conformation. Furthermore, the fluorinated hairpin structure adopts two distinct conformations that differ in the sugar conformation of the U and C nucleoside units, as detected by the 19F-NMR chemical shifts. The role of the 2′-OH group as stabilizing element in RNA secondary structure is discussed.  相似文献   
8.
9.
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio‐)chemical thermodynamics. Many important endogenous receptor‐binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice‐summation scheme or a cutoff‐truncation scheme with Barker–Watts reaction‐field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest‐host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free‐energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   
10.
Förster resonance energy transfer (FRET) measurements are widely used to investigate (bio)molecular interactions or/and association. FRET efficiencies, the primary data obtained from this method, give, in combination with the common assumption of isotropic chromophore orientation, detailed insight into the lengthscale of molecular phenomena. This study illustrates the application of a FRET efficiency restraint during classical atomistic molecular dynamics simulations of a mutant mastoparan X peptide in either water or 7 M aqueous urea. The restraint forces acting on the donor and acceptor chromophores ensure that the sampled peptide configurational ensemble satisfies the experimental primary data by modifying interchromophore separation and chromophore transition dipole moment orientations. By means of a conformational cluster analysis, it is seen that indeed different configurational ensembles may be sampled without and with application of the restraint. In particular, while the FRET efficiency and interchromophore distances monitored in an unrestrained simulation may differ from the experimentally‐determined values, they can be brought in agreement with experimental data through usage of the FRET efficiency restraining potential. Furthermore, the present results suggest that the assumption of isotropic chromophore orientation is not always justified. The FRET efficiency restraint allows the generation of configurational ensembles that may not be accessible with unrestrained simulations, and thereby supports a meaningful interpretation of experimental FRET results in terms of the underlying molecular degrees of freedom. Thus, it offers an additional tool to connect the realms of computer and wet‐lab experimentation. © 2014 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号