首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
化学   6篇
数学   4篇
物理学   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有11条查询结果,搜索用时 421 毫秒
1.
Herein, two deep-blue emissive molecules ( SAF-PI and SAF-DPI ) are designed and synthesized using spiro[acridine-9,9’-fluorene] as a donor (D) substituted with 2-(3-methylphenyl)-1-phenyl-phenanthro[9,10-d]imidazole as an acceptor (A), forming twisted D−A and A−D−A structures, respectively. The photophysical studies and density functional theory (DFT) calculations reveal that both molecules exhibit hybridized local excited and charge transfer (HLCT) characteristics with deep blue emission color. They are effectively applied as non-doped emitters in OLEDs. Particularly, SAF-PI -based device achieves the high-definition television (HDTV) standard blue color emission peaked at 428 nm with CIE coordinate of (0.156, 0.053), a narrow full width at half maximum of 55 nm, a maximum external quantum efficiency (EQEmax) of 4.57% and an exciton utilization efficiency of 65%.  相似文献   
2.
Despite the success of thermally activated delayed fluorescent (TADF) materials in steering the next generation of organic light‐emitting diodes (OLEDs), effective near infrared (NIR) TADF emitters are still very rare. Here, we present a simple and extremely high electron‐deficient compound, 5,6‐dicyano[2,1,3]benzothiadiazole (CNBz), as a strong electron‐accepting unit to develop a sufficiently strong donor‐acceptor (D?A) interaction for NIR emission. End‐capping with the electron‐donating triphenylamine (TPA) unit created an effective D?A?D type system, giving rise to an efficient NIR TADF emissive molecule (λem=750 nm) with a very small ΔEST of 0.06 eV. The electroluminescent device using this NIR TADF emitter exhibited an excellent performance with a high maximum radiance of 10020 mW Sr?1 m?2, a maximum EQE of 6.57% and a peak wavelength of 712 nm.  相似文献   
3.
In this paper, we study a general viscosity explicit rule for approximating the solutions of the variational inclusion problem for the sum of two monotone operators. We then prove its strong convergence under some new conditions on the parameters in the framework of Hilbert spaces. As applications, we apply our main result to the split feasibility problem and the LASSO problem. We also give some numerical examples to support our main result. The results presented in this paper extend and improve the corresponding results in the literature.  相似文献   
4.
To control the COVID-19 pandemic, antivirals that specifically target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently required. The 3-chymotrypsin-like protease (3CLpro) is a promising drug target since it functions as a catalytic dyad in hydrolyzing polyprotein during the viral life cycle. Bioactive peptides, especially food-derived peptides, have a variety of functional activities, including antiviral activity, and also have a potential therapeutic effect against COVID-19. In this study, the hemp seed trypsinized peptidome was subjected to computer-aided screening against the 3CLpro of SARS-CoV-2. Using predictive trypsinized products of the five major proteins in hemp seed (i.e., edestin 1, edestin 2, edestin 3, albumin, and vicilin), the putative hydrolyzed peptidome was established and used as the input dataset. To select the Cannabis sativa antiviral peptides (csAVPs), a predictive bioinformatic analysis was performed by three webserver screening programs: iAMPpred, AVPpred, and Meta-iAVP. The amino acid composition profile comparison was performed by COPid to screen for the non-toxic and non-allergenic candidates, ToxinPred and AllerTOP and AllergenFP, respectively. GalaxyPepDock and HPEPDOCK were employed to perform the molecular docking of all selected csAVPs to the 3CLpro of SARS-CoV-2. Only the top docking-scored candidate (csAVP4) was further analyzed by molecular dynamics simulation for 150 nanoseconds. Molecular docking and molecular dynamics revealed the potential ability and stability of csAVP4 to inhibit the 3CLpro catalytic domain with hydrogen bond formation in domain 2 with short bonding distances. In addition, these top ten candidate bioactive peptides contained hydrophilic amino acid residues and exhibited a positive net charge. We hope that our results may guide the future development of alternative therapeutics against COVID-19.  相似文献   
5.
Herein, we present a molecular design of chrysene-based deep-blue emissive materials ( TC , TpPC , TpXC , and TmPC ), in which chrysene as a core is functionalized with different triphenylamine moieties to realize a fine-tuning deep-blue fluorescence with superior electroluminescent (EL) performance. The photophysical analyses and density functional theory (DFT) calculations disclose that TC , TpPC , and TpXC possess HLCT characteristics with intense deep-blue emission in the solid-state, good hole-transporting ability, and high thermal and electrochemical stabilities. They are successfully employed as non-doped emitters in simple structured OLEDs (ITO/PEDOT : PSS : NF/emitter/TPBi/LiF : Al). In particular, TC -based device emits a deep-blue light with an emission peak at 446 nm and CIE color coordinates of (0.148, 0.096), a maximum external quantum efficiency (EQEmax) of 4.31%, and a low turn-on voltage of 2.8 V.  相似文献   
6.
Among lanthanide-based compounds, cerium compounds exhibit a significant role in a variety of research fields due to their distinct tetravalency, high economic feasibility, and high stability of Ce(IV) complexes. Herein, a systematic investigation of crystallographic information, chemical properties, and mechanistic formation of the novel Ce(IV) complex synthesized from cerium(III) nitrate hexahydrate and 2,2′-(methylazanediyl)bis(methylene)bis(4-methylphenol) (MMD) ligand has been explored. According to the analysis of the crystallographic information, the obtained complex crystal consists of the Ce(IV) center coordinated with two nitrate ligands and two bidentate coordinated (N-protonated and O,O-deprotonated) MMD ligands. The fingerprint plots and the Hirshfeld surface analyses suggest that the C–H⋯O and C–H⋯π interactions significantly contribute to the crystal packing. The C–H⋯O and C–H⋯π contacts link the molecules into infinite molecular chains propagating along the [100] and [010] directions. Synchrotron powder X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) techniques have been employed to gain an understanding of the oxidative complexation of Ce(IV)-MMD complex in detail. This finding would provide the possibility to systematically control the synthetic parameters and wisely design the precursor components in order to achieve the desired properties of novel materials for specific applications.  相似文献   
7.
In this work, we introduce implicit and explicit iterations for solving the variational inclusion problem for the sum of two operators and the fixed point problem of nonexpansive mappings. We then prove its strong convergence theorems in the framework of Banach spaces. We finally provide some applications of the main results.  相似文献   
8.
In this paper, we give a short and simple proof of the recent result of Katchang and Kumam (Positivity 15:281–295, 2011). In our proof, we do not assume the uniform convexity of a space.  相似文献   
9.
Herein, new deep-blue triplet-triplet annihilation (TTA) molecules, namely 4-(10-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)anthracen-9-yl)benzonitrile (TPIAnCN) and 4-(12-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)chrysen-6-yl)benzonitrile (TPIChCN), are designed, synthesized, and investigated as emitters for organic light-emitting diodes (OLED). TPIAnCN and TPIChCN are composed of polyaromatic hydrocarbons of anthracene (An) and chrysene (Ch) as the cores functionalized with tetraphenylimidazole (TPI) and benzonitrile (CN) moieties, respectively. The experimental and theoretical results verify their excellent thermal properties, photophysical properties, as well as electrochemical properties. Particularly, their emissions are in the deep blue region, with TTA emissions being observed in their thin films. By utilization of these molecules as emitters, deep blue TTA OLEDs with CIE coordinates of (0.15, 0.05), high external quantum efficiency of 6.84%, and high exciton utilization efficiency (ηs) of 48% were fabricated. This result manifests the potential use of chrysene as an alternate building block to formulate new TTA molecules for accomplishing high-performance TTA OLEDs.  相似文献   
10.
Magnetoimpedance (MI) effect of cobalt-coated silicon steels is measured as a function of cobalt thickness (0−45 μm), DC magnetic field (0-2 kOe), frequency (1 kHz-1 MHz) and magnitude (1-20 mA) of AC current. With increase in deposition thickness, the MI ratio and the characteristic frequency are decreased because the samples are magnetically hardened by the coating. Nevertheless, cobalt deposition broadens the frequency-dependent MI curves, and the frequency range with a large MI ratio is extended. The variations of this peak width as well as the characteristic frequency and the MI ratio are explained by the skin effect and crossing effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号