首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   21篇
  国内免费   2篇
化学   210篇
晶体学   1篇
力学   1篇
数学   26篇
物理学   24篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   6篇
  2019年   11篇
  2018年   8篇
  2017年   5篇
  2016年   10篇
  2015年   9篇
  2014年   15篇
  2013年   12篇
  2012年   14篇
  2011年   18篇
  2010年   20篇
  2009年   7篇
  2008年   13篇
  2007年   10篇
  2006年   11篇
  2005年   17篇
  2004年   13篇
  2003年   5篇
  2002年   7篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1993年   5篇
  1992年   2篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1927年   1篇
排序方式: 共有262条查询结果,搜索用时 0 毫秒
1.
2.
The development of tailored materials for specific applications is an active field of research in chemistry, material science and drug discovery. The number of possible molecules obtainable from a set of atomic species grow exponentially with the size of the system, limiting the efficiency of classical sampling algorithms. On the other hand, quantum computers can provide an efficient solution to the sampling of the chemical compound space for the optimization of a given molecular property. In this work, we propose a quantum algorithm for addressing the material design problem with a favourable scaling. The core of this approach is the representation of the space of candidate structures as a linear superposition of all possible atomic compositions. The corresponding ‘alchemical’ Hamiltonian drives the optimization in both the atomic and electronic spaces leading to the selection of the best fitting molecule, which optimizes a given property of the system, e.g., the interaction with an external potential as in drug design. The quantum advantage resides in the efficient calculation of the electronic structure properties together with the sampling of the exponentially large chemical compound space. We demonstrate both in simulations and with IBM Quantum hardware the efficiency of our scheme and highlight the results in a few test cases. This preliminary study can serve as a basis for the development of further material design quantum algorithms for near-term quantum computers.

‘Alchemical’ quantum algorithm for the simultaneous optimisation of chemical composition and electronic structure for material design. By exploiting quantum mechanical principles this approach will boost drug discovery in the near future.  相似文献   
3.
Leung LT  Leung SK  Chiu P 《Organic letters》2005,7(23):5249-5252
[reactions: see text] [(Ph3P)CuH]6 effectively catalyzes the hydrostannation of activated alkynes with exclusive regioselectivity for alpha-stannation. Syn hydrostannation is observed exclusively for alkynoates. Anti or syn hydrostannation adducts are obtained as products for alkynone substrates.  相似文献   
4.
Graphene as a two-dimensional material is prone to hydrocarbon contaminations,which can significantly alter its intrinsic electrical properties.Herein,we implem...  相似文献   
5.
During the last decade, it has become increasingly important that researchers demonstrate that research is conducted to the highest standards. The implementation of quality assurance for research laboratories will enable all fields of research and development to be judged impartially. There are no specific standards for research laboratories but where possible, existing standards can be adapted. This review is structured around two approaches. The first considers research to be a logical extension of testing, and it is assumed that testing standards can be applied methodically to each step in a research project. The second advocates a flexible approach, with research-specific criteria for assessing quality. The important papers published on this topic have been reviewed. The conclusions are that the general quality management approach, encompassed by the ISO 9000 series of standards with the emphasis on customer satisfaction and ‘fitness for purpose’, is suitable for implementing quality assurance in research laboratories.  相似文献   
6.
A bacterial alpha-d-glucopyranosyl-1-phosphate thymidylyltransferase was found to couple four hexofuranosyl-1-phosphates, as well as a pentofuranosyl-1-phosphate, with deoxythymidine 5'-triphosphate, providing access to furanosyl nucleotides. The enzymatic reaction mixtures were analyzed by electrospray ionization mass spectrometry and NMR spectroscopy to determine the anomeric stereochemistry of furanosyl nucleotide products. This is the first demonstration of a nucleotidylyltransferase discriminating between diastereomeric mixtures of sugar-1-phosphates to produce stereopure, biologically relevant furanosyl nucleotides.  相似文献   
7.
The formation of variable-thickness CeO2 nanoparticle mesoporous films from a colloidal nanoparticle solution (approximately 1–3-nm-diameter CeO2) is demonstrated using a layer-by-layer deposition process with small organic binder molecules such as cyclohexanehexacarboxylate and phytate. Film growth is characterised by scanning and transmission electron microscopies, X-ray scattering and quartz crystal microbalance techniques. The surface electrochemistry of CeO2 films before and after calcination at 500 °C in air is investigated. A well-defined Ce(IV/III) redox process confined to the oxide surface is observed. Beyond a threshold potential, a new phosphate phase, presumably CePO4, is formed during electrochemical reduction of CeO2 in aqueous phosphate buffer solution. The voltammetric signal is sensitive to (1) thermal pre-treatment, (2) film thickness, (3) phosphate concentration and (4) pH. The reversible ‘underpotential reduction’ of CeO2 is demonstrated at potentials positive of the threshold. A transition occurs from the reversible ‘underpotential region’ in which no phosphate phase is formed to the irreversible ‘overpotential region’ in which the formation of the cerium(III) phosphate phase is observed. The experimental results are rationalised based on surface reactivity and nucleation effects.  相似文献   
8.
Silyl‐triflate‐catalyzed (4+3) cycloadditions of epoxy enolsilanes with dienes provide a mild and chemoselective synthetic route to seven‐membered carbocycles. Epoxy enolsilanes containing a terminal enolsilane and a single stereocenter undergo cycloaddition with almost complete conservation of enantiomeric purity, a finding that argues against the involvement of oxyallyl cation intermediates which have been previously proposed for these types of reactions. Reported are theoretical and experimental investigations of the cycloaddition mechanism. The major enantiomers of the cycloadducts are derived from SN2‐like reactions of the silylated epoxide with the diene, in which stereospecific ring opening and formation of the two new C? C bonds occur in a single step. Calculations predict, and experiments confirm, that the observed small losses of enantiomeric purity are traced to a triflate‐mediated double SN2 cycloaddition pathway.  相似文献   
9.
The syntheses and photophysical/photochemical properties of two amide-tethered coumarin-labeled nicotinamides are described. Photochemical studies of 6-bromo-7-hydroxycoumarin-4-ylmethylnicotinamide (BHC-nicotinamide) revealed an unexpected solvent effect. This result is rationalized by computational studies of the different protonation states using TD-DFT with the M06L/6-311+G** method with implicit and explicit solvation models. Molecular orbital energies responsible for the λ(max) excitation show that the functionalization of the coumarin ring results in a strong red-shift from 330 to 370 nm when the pH of solution is increased from 3.06 to 8.07. From this MO analysis, a model for solvent interactions has been proposed. The BHC-nicotinamide proved to be photochemically stable, which is also interpreted in terms of NBO calculations. The results provide a set of principles for the rational design of either photostable labeling reagents or photolabile cage compounds.  相似文献   
10.
The deployment of high-energy-density lithium-metal batteries has been greatly impeded by Li dendrite growth and safety concerns originating from flammable liquid electrolytes. Herein, we report a stable quasi-solid-state Li metal battery with a deep eutectic solvent (DES)-based self-healing polymer (DSP) electrolyte. This electrolyte was fabricated in a facile manner by in situ copolymerization of 2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)ethyl methacrylate (UPyMA) and pentaerythritol tetraacrylate (PETEA) monomers in a DES-based electrolyte containing fluoroethylene carbonate (FEC) as an additive. The well-designed DSP electrolyte simultaneously possesses non-flammability, high ionic conductivity and electrochemical stability, and dendrite-free Li plating. When applied in Li metal batteries with a LiMn2O4 cathode, the DSP electrolyte effectively suppressed manganese dissolution from the cathode and enabled high-capacity and a long lifespan at room and elevated temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号