首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
数学   6篇
物理学   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
In two papers Franz et al. proved bounds for the free energy of diluted random constraints satisfaction problems, for a Poisson degree distribution (Franz and Leone in J Stat Phys 111(3–4):535–564, 2003) and a general distribution (Franz et al. in J Phys A 36(43), 10967, 2003). Panchenko and Talagrand (Probab Theo Relat Fields 130(3):319–336, 2004) simplified the proof and generalized the result of Franz and Leone (J Stat Phys 111(3–4):535–564, 2003) for the Poisson case. We provide a new proof for the general degree distribution case and as a corollary, we obtain new bounds for the size of the largest independent set (also known as hard core model) in a large random regular graph. Our proof uses a combinatorial interpolation based on biased random walks (Salez in Combin Probab Comput 25(03):436–447, 2016) and allows to bypass the arguments in Franz et al. (J Phys A 36(43):10967, 2003) based on the study of the Sherrington–Kirkpatrick (SK) model.  相似文献   
2.
3.
4.
This paper addresses the problem of open shop scheduling on two machines with resources constraints. In the context of our study, in order to be executed, a job requires first, for its preparation for a given period of time, a number of resources which cannot exceed a given resource capacity. Then, it goes onto its execution while the resources allocated to it become available again. We seek a schedule that minimizes the makespan. We first prove the $\mathcal{N}\mathcal{P}$ -hardness of several versions of this problem. Then, we present a well solvable case, lower bounds, and heuristic algorithms along with an experimental study.  相似文献   
5.
We investigate two scheduling problems. The first is scheduling with agreements (SWA) that consists in scheduling a set of jobs non-preemptively on identical machines in a minimum time, subject to constraints that only some specific jobs can be scheduled concurrently. These constraints are represented by an agreement graph. We extend the NP-hardness of SWA with three distinct values of processing times to only two values and this definitely closes the complexity status of SWA on two machines with two fixed processing times. The second problem is the so-called resource-constrained scheduling. We prove that SWA is polynomially equivalent to a special case of the resource-constrained scheduling and deduce new complexity results of the latter.  相似文献   
6.

This paper addresses a generalization of the coupled-operations scheduling problem in the context of a flow shop environment. We consider the two-machine scheduling problem with the objective of minimizing the makespan. Each job consists of a coupled-operation to be processed first on the first machine and a single operation to be then processed on the second machine. A coupled-operation contains two operations separated by an exact time delay. The single operation can start on the second machine only when the coupled-operation on the first machine is completed. We prove the NP-completeness of two restricted versions of the general problem, whereas we also exhibit several other well solvable cases.

  相似文献   
7.
This paper deals with two-machine flowshop problems with deteriorating tasks, i.e. tasks whose processing times are a nondecreasing function that depend on the length of the waiting periods. We consider the so-called Restricted Problem. This problem can be defined as follows: for a given permutation of tasks, find an optimal placement on two machines so that the total completion time is minimized. We will show that the Restricted Problem is nontrivial. We give some properties for the optimal placement and we propose an optimal placement algorithm.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号