首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   5篇
化学   11篇
数学   6篇
物理学   14篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Molecular Diversity - In the present work, a series of bisbenzazole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of these compounds was...  相似文献   
2.
3.
In this study, we introduce newly defined Gamma operators which preserve constants and e2μ·, μ>0 functions. In accordance with this purpose, we focus on their approximation properties such as uniform convergence, rate of convergence, asymptotic formula, and saturation results. Superior properties of introduced operators have been tested both theoretically and numerically in certain senses to highlight the performance of the new constructions of Gamma operators.  相似文献   
4.
In this present study, the forced convection heat transfer from aluminum foam heat sinks with 10, 20, 40 PPI pore density placed in a discrete form in a partially open cavity were experimentally investigated. Air was used as working fluid. The uniform heat flux was applied to 3 × 3 array of foam heat sinks horizontally mounted in the cavity. The experimental studies were performed for the 3363–9743 range of Reynolds number and the 2.7 x 106 and 7.5 x 106 range of modified Grashof number. The effects of the Reynolds number, the modified Grashof number and the pore density of foam heat sink on the heat transfer were investigated. The results obtained were compared with the results obtained without foam heat sink cases. In addition, the most heated elements within the cavity were identified and solution proposals were presented. In addition, the most heated elements within the cavity were identified and solution proposals were presented.  相似文献   
5.
In this paper, we apply game theory to model strategies of secrecy and deception in a multiple-period attacker–defender resource-allocation and signaling game with incomplete information. At each period, we allow one of the three possible types of defender signals—truthful disclosure, secrecy, and deception. We also allow two types of information updating—the attacker updates his knowledge about the defender type after observing the defender’s signals, and also after observing the result of a contest (if one occurs in any given time period). Our multiple-period model provides insights into the balance between capital and expense for defensive investments (and the effects of defender private information, such as defense effectiveness, target valuations, and costs), and also shows that defenders can achieve more cost-effective security through secrecy and deception (possibly lasting more than one period), in a multiple-period game.  相似文献   
6.
In this study, a dual spinneret electrospinning technique was applied to fabricate a series of polyurethane (PU) and polyvinyl alcohol–gelatin (PVA/Gel) nanofibrous scaffolds. The study aims to enhance the properties of PU/PVA-Gel NFs loaded with a low dose of nanoceria through the incorporation of cinnamon essential oil (CEO). The as-prepared nCeO2 were embedded into the PVA/Gel nanofibrous layer, where the cinnamon essential oil (CEO) was incorporated into the PU nanofibrous layer. The morphology, thermal stability, mechanical properties, and chemical composition of the produced NF mats were investigated by STEM, DSC, and FTIR. The obtained results showed improvement in the mechanical, and thermal stability of the dual-fiber scaffolds by adding CEO along with nanoceria. The cytotoxicity evaluation revealed that the incorporation of CEO to PU/PVA-Gel loaded with a low dose of nanoceria could enhance the cell population compared to using pure PU/PVA-Gel NFs. Moreover, the presence of CEO could inhibit the growth rate of S. aureus more than E. coli. To our knowledge, this is the first time such nanofibrous membranes composed of PU and PVA-Gel have been produced. The first time was to load the nanofibrous membranes with both CEO and nCeO2. The obtained results indicate that the proposed PU/PVA-Gel NFs represent promising platforms with CEO and nCeO2 for effectively managing diabetic wounds.  相似文献   
7.
A new metamaterial absorber structure is designed and characterized both numerically and experimentally for microwave energy harvesting applications. The proposed structure includes four wheel resonators with different dimensions, from which the overall response of the structure can then be obtained by summing all the overlapping frequency responses corresponding to each dimension. The essential operation frequency range of the wheels is selected in such a way that the energy used in wireless communications and found within the environment that we live is absorbed. The dimensions are obtained using parametric study and genetic algorithm to realize wideband absorption response. When the simulation and measurement results are taken into account, it is observed that the metamaterial absorber based harvester has potential to absorb and convert microwave energy with an absorption ratio lying within the range of 80 and 99% for the frequency band of 3–5.9 and 7.3–8 GHz. The conversion efficiency of the structure as a harvester is found to be greater than 0.8 in the interval of 2–5 GHz. Furthermore, the incident angle and polarization dependence of the wheel resonator based metamaterial absorber and harvester is also investigated and it is observed that the structure has both polarization and incident angle independent frequency response with good absorption characteristics in the entire working frequency band. Hence, the suggested design having good absorption, polarization and angle independent characteristics with wide bandwidth is a potential candidate for future energy harvester using wireless communication frequency band.  相似文献   
8.
This study numerically demonstrates the effects of partial band gaps on the negative refraction properties of sonic crystal. The partial band gap appearing at the second band edge leads to the efficient transmissions of scattered wave envelopes in the transverse directions inside triangular lattice sonic crystal, and therefore enhances the refraction property of sonic crystal. Numerical simulation results indicate a diagonal guidance of coupled scattered wave envelopes inside crystal structure at the partial band gap frequencies and then output waves are restored in the vicinity of the output interface of sonic crystal by combining phase coherent scattered waves according to Huygens' principles. This mechanism leads to two operations for wavefront engineering: one is spatial wavefront shifting operation and the other is convex–concave wavefront inversion operation. The effects of this mechanism on the negative refraction and wave focalization are investigated by using the finite difference time domain(FDTD) simulations. This study contributes to a better understanding of negative refraction and wave focusing mechanisms at the band edge frequencies, and shows the applications of the slab corner beam splitting and SC-air multilayer acoustic system.  相似文献   
9.
While chemotherapy is an effective method for treating cancers such as colorectal cancer, its effectiveness may be dampened by the drug resistance and it may have significant side effects due to the destruction of normal cells during the treatment. As a result, there is a need for research on choosing an optimal chemotherapy treatment plan that minimizes the number of cancerous cells while ensuring that the total toxicity is below an allowable limit. In this paper, we summarize the mathematical models applied to the optimal design of the cancer chemotherapy. We first elaborate on a typical optimization model and classify relevant literature with respect to modeling methods: Optimal control model (OCM) and others. We further classify the OCM models with respect to the solution method used. We discuss the limitations of the existing research and provide several directions for further research in optimizing chemotherapy treatment planning.  相似文献   
10.
This study presents a theoretical analysis method to calculate electromagnetic (EM) wave power absorption spectrum of materials by using attenuation coefficients. The heating effect of EM waves is modeled to analyze spectral distribution of temperature rises inside material body as a result of EM wave power absorption. These analyses are very useful for the investigation of electromagnetic wave-material interaction on the bases of electro-physical material parameters (permittivity, permeability and conductivity). An illustrative analysis of spatio-spectral distribution of EM wave energy absorption and resulting heating effect were conducted for muscle tissues and the results are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号