首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
化学   5篇
力学   1篇
数学   4篇
物理学   30篇
  2022年   3篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   20篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
Uranium and thorium contents were evaluated in water samples collected from different sources of the piedmont of the Middle Atlas mountains by using two types of solid state nuclear track detectors (SSNTD). In addition, the radon (222Rn) and thoron (220Rn) -activities per unit volume of the water samples were also determined. The influence of the water flow rate and altitude on the radon concentration of the water samples belonging to the piedmont of the Middle Atlas mountains was investigated. The hydraulic exchanges between the Middle Atlas water reservoirs and the Turonian aquifer of the neighbouring Tadla plain have been quantified. The results were compared with data given in literature.  相似文献   
2.
This paper is devoted to solve the system of partial differential equations governing the flow of two superposed immiscible layers of shallow water flows. The system contains source terms due to bottom topography, wind stresses, and nonconservative products describing momentum exchange between the layers. The presence of these terms in the flow model forms a nonconservative system which is only conditionally hyperbolic. In addition, two-layer shallow water flows are often accompanied with moving discontinuities and shocks. Developing stable numerical methods for this class of problems presents a challenge in the field of computational hydraulics. To overcome these difficulties, a new composite scheme is proposed. The scheme consists of a time-splitting operator where in the first step the homogeneous system of the governing equations is solved using an approximate Riemann solver. In the second step a finite volume method is used to update the solution. To remove the non-physical oscillations in the vicinity of shocks a nonlinear filter is applied. The method is well-balanced, non-oscillatory and it is suitable for both low and high values of the density ratio between the two layers. Several standard test examples for two-layer shallow water flows are used to verify high accuracy and good resolution properties for smooth and discontinuous solutions.  相似文献   
3.
4.
The effects of N-phenylmaleimide (NPMI) concentration and gamma dose on the molecular and optical properties of poly(vinyl chloride) (PVC) have been studied. The results reveal an improvement in the intrinsic viscosity of PVC in the presence of an organic material. The effective concentration that enhanced the intrinsic viscosity, from 1.02 to 1.28, was found to be 10 mmol NPMI per 100 g PVC. The effect of gamma irradiation on the PVC polymer stabilized with this concentration of NPMI has been studied. Samples from the 0.01 g NPMI/1 g PVC were irradiated with gamma doses in the range 5–180 kGy. It is found that irradiation in the dose range 120–180 kGy enhances the intrinsic viscosity of the samples. In addition, the transmission of these irradiated samples in the wavelength range 200–2500 nm, as well as any color changes was studied. The color intensity (Δ E) was greatly increased with the increasing gamma dose, and was accompanied by darkness with a significant increase in the yellow color component.  相似文献   
5.
6.
The structural and optical properties of thin films of polyimide composites with nanosilica particle content of 15?wt%, prepared via sol–gel process, were studied as a function of the gamma dose. The resultant effect of gamma irradiation on the properties of polyimide/silica nanocomposite has been investigated using X-ray diffraction and UV spectroscopy. Absorption and reflectance spectra were collected by a spectrophotometer giving UV-radiation of wavelength range 200–800?nm. The optical data obtained were analyzed and the calculated values of the optical energy gap exhibited gamma dose dependence. The direct optical energy gap for the nonirradiated polyimide/silica nanocomposite is about 2.41?eV, and increases to a value of 2.65?eV when irradiated with gamma doses up to 300?kGy. It was found that the calculated refractive index of the polyamide/silica increases with the gamma dose in the range 50–300?kGy.  相似文献   
7.
ABSTRACT

Bayfol (PC-PBT blend ?lm) is a class of polymeric solid-state nuclear track detector which has a lot of applications in several radiation detection ?elds. It is a bisphenol-A polycarbonate PC blended with polybutylene terephthalate PBT. Bayfol/Palladium (PC-PBT/Pd) nanocomposite films have been deposited using the molding technique. It is worth mentioning that this report is almost the first one dealing with the topic of the changes of physical properties of Bayfol/Pd nanocomposite due to laser exposure. Samples from PC-PBT/Pd (5?wt%) nanocomposite were exposed to IR-pulsed laser of 5-W power, capable of producing 2000 pulses per second with pulse duration of 200?ns at 904?nm. The laser fluences were in the range 2–25?J/cm2. The resultant modi?cations in the exposed nanocomposite samples have been studied as a function of fluence using different characterization techniques such as X-ray diffraction (XRD), UV spectroscopy and color difference studies. The results indicate the proper dispersion of Pd nanoparticles in the PC-PBT matrix that causes a strong intermolecular interaction between Pd and PC-PBT, resulted in an increase in refractive index and the amorphous phase. Also, it is found that the laser exposure reduces the optical energy gap that could be attributed to the increase in structural disorder of the exposed PC-PBT/Pd nanocomposites due to crosslinking. Further, the color intensity ΔE, which is the color difference between the exposed samples and the non-exposed one, was increased with increasing the laser fluence, convoyed by a significant increase in the green and yellow color components.  相似文献   
8.
Samples from sheets of the polymeric material PM-355 have been exposed to X-rays from a 50 kV X-ray tube in the dose range of 10–300 kGy. The resultant effect of X-ray irradiation on the structural properties of PM-355 has been investigated using different techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Vickers hardness and refractive index measurements. The results indicate that the X-ray irradiation of PM-355 in the dose range of 10–20 kGy causes initially chain scission. Above 20 and up to 100 kGy, the active free radicals produced from scission contribute to chemical reactions that lead to the crosslinking. Thus, the X-ray irradiation in the dose range of 20–100 kGy leads to a more compact structure of the PM-355 polymer, resulting in an enhancement of its Vickers hardness and refractive index. Moreover, the irradiation in the dose range of 100–300 kGy leads to the predominance of the degradation. This degradation is reported by FTIR spectroscopy and enhances the degree of ordering in the degraded samples as revealed by XRD technique. Additionally, it decreases both the Vickers hardness and refractive index of the PM-355 samples.  相似文献   
9.
Makrofol BL 2–4 is an extrusion film based on Makrolon polycarbonate. It comprises excellent die-cutting performance combined with high light transmission and moderate light scattering properties. It is a class of polymeric solid state nuclear track detectors which has many applications in various radiation detection fields. In the present work, Makrofol samples were irradiated using different gamma doses ranging from 10 to 350 kGy. The structural modifications in the gamma-irradiated Makrofol samples have been studied as a function of dose using different characterization techniques such as X-ray diffraction, intrinsic viscosity, Fourier transform infrared spectroscopy, thermogravimetric analysis, refractive index and color difference studies. The gamma irradiation in the dose range 20–200 kGy led to a more compact structure of Makrofol polymer, which resulted in an improvement in its thermal stability with an enhancement in its structural and optical properties.  相似文献   
10.
Bayfol CR 1-4 polycarbonate is a class of polymeric solid state nuclear track detector which has many applications in various radiation detection fields. Samples from sheets of Bayfol have been irradiated with gamma doses ranging from 100 to 620 kGy. The structural modifications in the gamma-irradiated Bayfol samples have been studied as a function of dose, using different characterization techniques such as X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, intrinsic viscosity and refractive index. The results indicate that the carbonyl group (C?O) degraded under irradiation up to 200 kGy. This degradation, reported by FTIR spectroscopy enhanced the degree of ordering in the degraded samples as revealed by the XRD technique. Above 200 and up to 620 kGy, cross-linking is achieved, leading to an increase in the intrinsic viscosity from 0.41 to 0.78 at 35°C, indicating an increase in the average molecular mass. On the other hand, the resultant effect of gamma irradiation on the thermal properties of Bayfol has been investigated using thermo-gravimetric analysis, results indicating that the gamma irradiation in the dose range 200–620 kGy led to a more compact structure of Bayfol polymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition due to cross-linking. In addition, the V–I characteristics of the polymer samples were performed, results indicated that at higher voltage, the conduction mechanism of Bayfol CR 1-4 was identified as the Poole–Frenkel type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号