首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
化学   37篇
力学   1篇
数学   3篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1983年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有43条查询结果,搜索用时 46 毫秒
1.
Targeted alpha therapy is an emerging strategy for the treatment of disseminated cancer. [223Ra]RaCl2 is the only clinically approved alpha particle-emitting drug, and it is used to treat castrate-resistant prostate cancer bone metastases, to which [223Ra]Ra2+ localizes. To specifically direct [223Ra]Ra2+ to non-osseous disease sites, chelation and conjugation to a cancer-targeting moiety is necessary. Although previous efforts to stably chelate [223Ra]Ra2+ for this purpose have had limited success, here we report a biologically stable radiocomplex with the 18-membered macrocyclic chelator macropa. Quantitative labeling of macropa with [223Ra]Ra2+ was accomplished within 5 min at room temperature with a radiolabeling efficiency of >95%, representing a significant advancement over conventional chelators such as DOTA and EDTA, which were unable to completely complex [223Ra]Ra2+ under these conditions. [223Ra][Ra(macropa)] was highly stable in human serum and exhibited dramatically reduced bone and spleen uptake in mice in comparison to bone-targeted [223Ra]RaCl2, signifying that [223Ra][Ra(macropa)] remains intact in vivo. Upon conjugation of macropa to a single amino acid β-alanine as well as to the prostate-specific membrane antigen-targeting peptide DUPA, both constructs retained high affinity for 223Ra, complexing >95% of Ra2+ in solution. Furthermore, [223Ra][Ra(macropa-β-alanine)] was rapidly cleared from mice and showed low 223Ra bone absorption, indicating that this conjugate is stable under biological conditions. Unexpectedly, this stability was lost upon conjugation of macropa to DUPA, which suggests a role of targeting vectors in complex stability in vivo for this system. Nonetheless, our successful demonstration of efficient radiolabeling of the β-alanine conjugate with 223Ra and its subsequent stability in vivo establishes for the first time the possibility of delivering [223Ra]Ra2+ to metastases outside of the bone using functionalized chelators, marking a significant expansion of the therapeutic utility of this radiometal in the clinic.

The therapeutic alpha-emitter 223Ra can be stably complexed in vivo, creating opportunities for the development of targeted radiopharmaceutical agents with this radionuclide.  相似文献   
2.
Nanomaterial of Cu(3)(BTC)(2) (BTC = benzene tricarboxylic acid) incorporating Keggin heteropolyacid conveniently prepared at room temperature and recovered by freeze drying outperforms ultrastable Y zeolite in acid catalysed esterification reaction.  相似文献   
3.
Racemization has a large impact upon the biological properties of molecules but the chemical scope of compounds with known rate constants for racemization in aqueous conditions was hitherto limited. To address this remarkable blind spot, we have measured the kinetics for racemization of 28 compounds using circular dichroism and 1H NMR spectroscopy. We show that rate constants for racemization (measured by ourselves and others) correlate well with deprotonation energies from quantum mechanical (QM) and group contribution calculations. Such calculations thus provide predictions of the second‐order rate constants for general‐base‐catalyzed racemization that are usefully accurate. When applied to recent publications describing the stereoselective synthesis of compounds of purported biological value, the calculations reveal that racemization would be sufficiently fast to render these expensive syntheses pointless.  相似文献   
4.
Monomeric Cu(I) amido and thiolate complexes that are supported by the N-heterocyclic carbene ligand 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) catalyze the hydroamination and hydrothiolation of electron-deficient vinylarenes with reactivity patterns that are consistent with an intermolecular nucleophilic addition of the amido/thiolate ligand of (IPr)Cu(XR) (X = NH or S; R = Ph, CH2Ph) to free vinylarene.  相似文献   
5.
The potential energy surfaces (PESs) and associated energy barriers that characterize the spin-forbidden recombination reactions of the gas-phase ferrous deoxy-heme group with CO, NO, and H2O ligands have been calculated using density functional theory (DFT). The bond energy for binding of O2 has also been calculated. Extensive large basis set CCSD(T) calculations on two small models of the heme group have been used to calibrate the accuracy of different DFT functionals for treating these systems. Pure functionals are shown to overestimate the stability of the low-spin forms of the deoxy-heme model, and to overestimate the binding energy of H2O and CO, whereas hybrid functionals such as B3PW91 and B3LYP yield accurate results. Accordingly, the latter functionals have been used to explore the PESs for binding. CO binding is found to involve a significant barrier of ca. 3 kcal mol-1 due to the need to change from the deoxy-heme quintet ground state to the bound singlet state. Binding of water does not involve a barrier, but the resulting bond is weak and may be further weakened in the protein environment, which should explain why water binding is not usually observed in heme proteins such as myoglobin. NO binding involves a low barrier, which is consistent with observed rapid geminate recombination. The calculated bond energies are in good agreement with previous reported values and in fair agreement with experiment for CO and O2. The value for NO is significantly lower than the experimentally derived bond energy, suggesting that B3LYP is less accurate in this case.  相似文献   
6.
Using 2D proton-coupled gHSQC pulse sequences in addition to 1D 15N NMR experiments of 15N labeled systems, 15N NMR chemical shifts of a range of transition metal amido and amine complexes were determined. Tungsten(II), ruthenium(II), platinum(IV) and copper(I) complexes with aniline and their anilido variants were studied and compared to free aniline, lithium anilido and anilinium tetrafluoroborate. Upon coordination of aniline to transition metals, upfield chemical shifts of 20–60 ppm were observed. Deprotonation of the amine complexes to form amido complexes resulted in downfield chemical shifts of 40–60 ppm for all of the complexes except for the tungsten d4 system. For the tungsten(II) complexes, the cationic aniline complex displayed a downfield shift of approximately 56 ppm relative to the neutral anilido complex. The change in chemical shift for amine to amido conversion is proposed to depend on the ability of the amido ligand to π-bond with the metal center, which influences the magnitude of the paramagnetic screening term.  相似文献   
7.
The need for clean, renewable energy has fostered research into photovoltaic alternatives to silicon solar cells. Pigment–protein complexes in green plants convert light energy into chemical potential using redox processes that produce molecular oxygen. Here, we report the first use of spinach protein photosystem II (PSII) core complex in lipid films in photoelectrochemical devices. Photocurrents were generated from PSII in a ∼2 μm biomimetic dimyristoylphosphatidylcholine (DMPC) film on a pyrolytic graphite (PG) anode with PSII embedded in multiple lipid bilayers. The photocurrent was ∼20 μA cm−2 under light intensity 40 mW cm−2. The PSII–DMPC anode was used in a photobiofuel cell with a platinum black mesh cathode in perchloric acid solution to give an output voltage of 0.6 V and a maximum output power of 14 μW cm−2. Part of this large output is related to a five-unit anode–cathode pH gradient. With catholytes at higher pH or no perchlorate, or using an MnO2 oxygen-reduction cathode, the power output was smaller. The results described raise the possibility of using PSII–DMPC films in small portable power conversion devices.  相似文献   
8.

Background  

Malate synthase catalyzes the second step of the glyoxylate bypass, the condensation of acetyl coenzyme A and glyoxylate to form malate and coenzyme A (CoA). In several microorganisms, the glyoxylate bypass is of general importance to microbial pathogenesis. The predicted malate synthase G of Pseudomonas aeruginosa has also been implicated in virulence of this opportunistic pathogen.  相似文献   
9.
The combination of Mg(ClO4)2, 2,2′-bipyridine and N-methylmorpholine generates an effective catalyst system for the direct addition of α-carbonate-substituted ketones to aryl N-Ts imines. Methyl-carbonate-substituted ketones deliver acyclic α-hydroxy-β-aminoketone derivates, while ketones substituted with α-iso-propenyl-carbonates furnish cyclic carbamate adducts. In both cases the anti-configured Mannich products dominate.  相似文献   
10.
Herein we describe the preparation and structure‐activity relationship studies on range of stilbene based compounds and their antibacterial activity. Two related compounds, each bearing carboxylic acid moieties, exhibit good activity against several bacterial strains, including methicillin‐resistant Staphylococcus aureus MRSA (ATCC 33592 and NCTC 10442). Compound 10 was most active against Moraxella catarrhalis with minimum inhibitory concentrations (MICs) of 0.12–0.25 μg mL?1 and against Staphylococcus spp. with MICs ranging from 2–4 μg mL?1. The derivative 17 showed increased activity with MICs of 0.06–0.25 μg mL?1 against M. catarrhalis and 0.12–1 against Staphylococcus spp. This level of activity is similar to that reported for S. aureus for antibiotics, such as vancomycin, with MICs of ≤2.0 μg mL?1 and clindamycin with MICs of ≤0.5 μg mL?1. As an indicator of toxicity, 17 was tested for its ability to lyse sheep erythrocytes, and showed low haemolytic activity. Such results highlight the value of tris(stilbene) compounds as antibacterial agents providing suitable properties for further development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号