首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   1篇
数学   10篇
  2021年   1篇
  2010年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2003年   1篇
  1997年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Kaempferia parviflora Wall. ex Baker (KP) has been reported to attenuate cartilage destruction in rat model of osteoarthritis. Previously, we demonstrated that KP rhizome extract and its active components effectively suppressed mechanisms associated with RA in SW982 cells. Here, we further evaluated the anti-arthritis potential of KP extract by using multi-level models, including a complete Freund’s adjuvant-induced arthritis and a cartilage explant culture model, and to investigate the effects of KP extract and its major components on related gene expressions and underlying mechanisms within cells. In arthritis rats, the KP extract reduced arthritis indexes, with no significant changes in biological parameters. In the cartilage explant model, the KP extract exerted chondroprotective potential by suppressing sulfated glycosaminoglycans release while preserving high accumulation of proteoglycans. In human chondrocyte cell line, a mixture of the major components equal to their amounts in KP extract showed strong suppression the expression of genes-associated inflammatory joint disease similar to that of the extract. Additionally, KP extract significantly suppressed NF-κB and MAPK signaling pathways. The suppressing expression of necroptosis genes and promoted anti-apoptosis were also found. Collectively, these results provided supportive evidence of the anti-arthritis properties of KP extract, which are associated with its three major components.  相似文献   
2.
Matching extension and minimum degree   总被引:1,自引:0,他引:1  
Let G be a simple connected graph on 2n vertices with a perfect matching. For a given positive integer k, 1 k n − 1, G is k-extendable if for every matching M of size k in G, there exists a perfect matching in G containing all the edges of M. The problem that arises is that of characterizing k-extendable graphs. In this paper, we establish a necessary condition, in terms of minimum degree, for k-extendable graphs. Further, we determine the set of realizable values for minimum degree of k-extendable graphs. In addition, we establish some results on bipartite graphs including a sufficient condition for a bipartite graph to be k-extendable.  相似文献   
3.
A graph G is said to be k-γ-critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the resulting graph can be dominated with k−1 vertices. The structure of k-γ-critical graphs remains far from completely understood, even in the special case when the domination number γ=3. In a 1983 paper, Sumner and Blitch proved a theorem which may regarded as a result related to the toughness of 3-γ-critical graphs which says that if S is any vertex cutset of such a graph, then GS has at most |S|+1 components. In the present paper, we improve and extend this result considerably.  相似文献   
4.
A dominating set of vertices S of a graph G is connected if the subgraph G[S] is connected. Let γc(G) denote the size of any smallest connected dominating set in G. A graph G is k-γ-connected-critical if γc(G)=k, but if any edge is added to G, then γc(G+e)?k-1. This is a variation on the earlier concept of criticality of edge addition with respect to ordinary domination where a graph G was defined to be k-critical if the domination number of G is k, but if any edge is added to G, the domination number falls to k-1.A graph G is factor-critical if G-v has a perfect matching for every vertex vV(G), bicritical if G-u-v has a perfect matching for every pair of distinct vertices u,vV(G) or, more generally, k-factor-critical if, for every set SV(G) with |S|=k, the graph G-S contains a perfect matching. In two previous papers [N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, 3-factor-criticality in domination critical graphs, Discrete Math. 2007, to appear [3].] on ordinary (i.e., not necessarily connected) domination, the first and third authors showed that under certain assumptions regarding connectivity and minimum degree, a critical graph G with (ordinary) domination number 3 will be factor-critical (if |V(G)| is odd), bicritical (if |V(G)| is even) or 3-factor-critical (again if |V(G)| is odd). Analogous theorems for connected domination are presented here. Although domination and connected domination are similar in some ways, we will point out some interesting differences between our new results for the case of connected domination and the results in [N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, 3-factor-criticality in domination critical graphs, Discrete Math. 2007, to appear [3].].  相似文献   
5.
Let γ(G) denote the minimum cardinality of a dominating set for G. A graph G is said to be k-γ-critical if γ(G)=k, but γ(G+e)<k for each edge eE(G¯). In this paper, we provide the structure of 4-γ-critical connected graphs with a cut vertex. We establish that such graphs of even order contain a perfect matching. This result partially resolves a problem posed by Sumner and Wojcicka in 1998. They asked whether every k-γ-critical graph of even order contains a perfect matching for k4.  相似文献   
6.
A subset of vertices D of a graph G is a dominating set for G if every vertex of G not in D is adjacent to one in D. The cardinality of any smallest dominating set in G is denoted by γ(G) and called the domination number of G. Graph G is said to be γ-vertex-critical if γ(G-v)<γ(G), for every vertex v in G. A graph G is said to be factor-critical if G-v has a perfect matching for every choice of vV(G).In this paper, we present two main results about 3-vertex-critical graphs of odd order. First we show that any such graph with positive minimum degree and at least 11 vertices which has no induced subgraph isomorphic to the bipartite graph K1,5 must contain a near-perfect matching. Secondly, we show that any such graph with minimum degree at least three which has no induced subgraph isomorphic to the bipartite graph K1,4 must be factor-critical. We then show that these results are best possible in several senses and close with a conjecture.  相似文献   
7.
A graph G of order p is k-factor-critical,where p and k are positive integers with the same parity, if the deletion of any set of k vertices results in a graph with a perfect matching. G is called maximal non-k-factor-critical if G is not k-factor-critical but G+e is k-factor-critical for every missing edge eE(G). A connected graph G with a perfect matching on 2n vertices is k-extendable, for 1?k?n-1, if for every matching M of size k in G there is a perfect matching in G containing all edges of M. G is called maximal non-k-extendable if G is not k-extendable but G+e is k-extendable for every missing edge eE(G) . A connected bipartite graph G with a bipartitioning set (X,Y) such that |X|=|Y|=n is maximal non-k-extendable bipartite if G is not k-extendable but G+xy is k-extendable for any edge xyE(G) with xX and yY. A complete characterization of maximal non-k-factor-critical graphs, maximal non-k-extendable graphs and maximal non-k-extendable bipartite graphs is given.  相似文献   
8.
9.
10.
A graph G is said to be k-γ-critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the resulting graph can be dominated with k-1 vertices. The structure of k-γ-critical graphs remains far from completely understood when k?3.A graph G is factor-critical if G-v has a perfect matching for every vertex vV(G) and is bicritical if G-u-v has a perfect matching for every pair of distinct vertices u,vV(G). More generally, a graph is said to be k-factor-critical if G-S has a perfect matching for every set S of k vertices in G. In three previous papers [N. Ananchuen, M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs, Discrete Math. 272 (2003) 5-15; N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs. II. Utilitas Math. 70 (2006) 11-32], we explored the toughness of 3-γ-critical graphs and some of their matching properties. In particular, we obtained some properties which are sufficient for a 3-γ-critical graph to be factor-critical and, respectively, bicritical. In the present work, we obtain similar results for k-factor-critical graphs when k=3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号