首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   20篇
数学   2篇
物理学   3篇
  2021年   2篇
  2019年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1995年   1篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1975年   1篇
排序方式: 共有25条查询结果,搜索用时 250 毫秒
1.
Structural characteristics of nanosized ceria-silica, ceria-titania, and ceria-zirconia mixed oxide catalysts have been investigated using X-ray diffraction (XRD), Raman spectroscopy, BET surface area, thermogravimetry, and high-resolution transmission electron microscopy (HREM). The effect of support oxides on the crystal modification of ceria cubic lattice was mainly focused. The investigated oxides were obtained by soft chemical routes with ultrahighly dilute solutions and were subjected to thermal treatments from 773 to 1073 K. The XRD results suggest that the CeO(2)-SiO(2) sample primarily consists of nanocrystalline CeO(2) on the amorphous SiO(2) surface. Both crystalline CeO(2) and TiO(2) anatase phases were noted in the case of CeO(2)-TiO(2) sample. Formation of cubic Ce(0.75)Zr(0.25)O(2) and Ce(0.6)Zr(0.4)O(2) (at 1073 K) were observed in the case of the CeO(2)-ZrO(2) sample. Raman measurements disclose the fluorite structure of ceria and the presence of oxygen vacancies/Ce(3+). The HREM results reveal well-dispersed CeO(2) nanocrystals over the amorphous SiO(2) matrix in the cases of CeO(2)-SiO(2), isolated CeO(2), and TiO(2) (anatase) nanocrystals, some overlapping regions in the case of CeO(2)-TiO(2), and nanosized CeO(2) and Ce-Zr oxides in the case of CeO(2)-ZrO(2) sample. The exact structural features of these crystals as determined by digital diffraction analysis of HREM experimental images reveal that the CeO(2) is mainly in cubic fluorite geometry. The oxygen storage capacity (OSC) as determined by thermogravimetry reveals that the OSC of the mixed oxide systems is more than that of pure CeO(2) and is system dependent.  相似文献   
2.
3.
4.
The support material can play an important role in oxidation catalysis, notably for CO oxidation. Here, we study two materials of the Brownmillerite family, CaFeO2.5 and SrFeO2.5, as one example of a stoichiometric phase (CaFeO2.5, CFO) and one existing in different modifications (SrFeO2.75, SrFeO2.875 and SrFeO3, SFO). The two materials are synthesized using two synthesis methods, one bottom-up approach via a complexation route and one top-down method (electric arc fusion), allowing to study the impact of the specific surface area on the oxygen mobility and catalytic performance. CO oxidation on 18O-exchanged materials shows that oxygen from SFO participates in the reaction as soon as the reaction starts, while for CFO, this onset takes place 185 °C after reaction onset. This indicates that the structure of the support material has an impact on the catalytic performance. We report here on significant differences in the catalytic activity linked to long-term stability of CFO and SFO, which is an important parameter not only for possible applications, but equally to better understand the mechanism of the catalytic activity itself.  相似文献   
5.
6.
Novel oxoperoxomolybdenum(VI) complexes with the general formula MoO(O2)L2X2 (III, L = DMF, HMPT) and MoO(O2)Cl(ON)L(IV, ON) = pyridin-2-carboxylate (Pic), 8-hydroxyquinolinate (Quin) were prepared from the reaction of Ph3COOH or H2O2 with the corresponding cis-dioxo complexes. In the reaction with Ph3COOH both oxygen atoms of the peroxo moiety were found, by 18O labeling experiments, to come from the hydroperoxide. The X-ray crystal structure of MoO(O2)Cl(Pic)(HMPT) revealed a bipyramidal pentagonal surounding with a rather short OO distance (1.41 Å). Complexes III were found to be more reactive than MoO(O2)2,HMPT for the epoxidation of olefins (oxidative cleavage products are consecutively formed) but react by the same cyclic peroxymetalation mechanism. The absence of reaction in the case of complexes IV illustrates the necessity for the metal to possess an equatorial releasable coordination site adjacent to the peroxo group for the oxygen transfer to occur. Catalytic oxidation of olefins using Ph3COOH gave a selectivity in oxygenated products very different from that using t-BuOOH, and 18O labeling studies showed that alkyl-peroxidic rather than peroxo species are intermediates in this latter reaction. The mechanism of epoxidation of olefins by alkyl hydroperoxides catalyzed by d0 metal complexes is discussed.  相似文献   
7.
The characteristics as a chemosensor of the compound 3-methyl-6,8-di(2-pyridyl)-[1,2,3]triazolo[5',1':6,1]pyrido[2,3-]pyrimidine (1) have been analyzed. Interaction with Cu(2+) produces a quenching of the fluorescence, while interaction with Zn(2+) leads to a quenching of the fluorescence followed by a bathochromic shift. The crystal structure of the Zn(1)(H(2)O)(3)(ClO(4))(2) x H(2)O complex shows the coordination of Zn(2+) through the terpyridine moiety. The octahedral site is completed by three water molecules. Interactions of the Zn(2+) complex with the anions sulfate, nitrate, nitrite, and dihydrogenphosphate in ethanol produce hypsochromic shifts and restoration of the fluorescence whose magnitude depends on the anion involved. The maximum interaction is observed for H(2)PO(4)(-). Interactions of the Zn(2+) complex with the amino acids l-aspartate and l-glutamate have also been explored showing a higher interaction with l-aspartate.  相似文献   
8.
9.
10.
In this paper we extend the result we have established for the hyperbolic disk in [8] to the real and complex hyperbolic spaces. This includes the reconstruction of a function defined in a fixed ball from its averages on balls of radiir 1,r 2 lying inB(0,R).   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号