首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
力学   2篇
数学   8篇
  2014年   1篇
  2012年   2篇
  2009年   1篇
  2005年   1篇
  2004年   3篇
  1995年   1篇
  1968年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Equations are set up for describing, in a correct statement and with an accuracy sufficient in actual practice, the shear buckling modes (BMs) of cylindrical sandwich shells with a transversely soft core of arbitrary thickness. Based on them, solutions are obtained to a number of problems on the buckling instability according to shear modes under some force and thermal loadings. It is found that the BMs occur in the shell along the circumferential and axial directions if, in the precritical state, a normal compressive stress arises in the transverse direction. It is shown that this condition is fulfilled in the following cases: in axial tension of the shell with unequal forces applied to the end faces of bearing layers (the parameter of critical load is maximum if the tensile forces are equal); under external (internal) pressure; on cooling the outer and heating the inner layers. The results obtained are presented in the form of simple analytical formulas for determining the corresponding critical parameters of the force and thermal actions.Translated from Mekhanika Kompozitnykh Materialov, Vol. 41, No. 1, pp. 37–48, January–February, 2005.  相似文献   
2.
Based on linearized equations of the theory of elastic stability of straight composite bars with a low shear rigidity, which are constructed using the consistent geometrically nonlinear equations of elasticity theory for small deformations and arbitrary displacements and a kinematic model of Timoshenko type, exact analytical solutions of nonclassical stability problems are obtained for a bar subjected to axial compression and torsion for various modes of end fixation. It is shown that the problem of direct determination of the critical parameter of the compressive load at a given torque parameter leads to transcendental characteristic equations that are solvable only if bar ends have cylindrical hinges. At the same time, we succeeded in obtaining solutions to these equations in terms of wave formation parameters of the bar; these parameters, in turn, enabled us to find the parameter of the critical load at any boundary conditions. Also, an algorithm for numerical solution of the problems stated is proposed, which is based on reducing the problems to systems of integroalgebraic equations with Volterra-type operators and on solving these equations by the method of mechanical quadratures (finite sums). It is demonstrated that such numerical solutions exist only for certain ranges of parameters of the bar and of the parameter of torque. In the general case, they can not be obtained by the numerical method used. It is also shown that the well-known solutions of the stability problem for a bar subjected to torsion or to compression with torsion are in correct. Translated from Mekhanika Kompozitnykh Materialov, Vol. 45, No. 2, pp. 167–200, March–April, 2009.  相似文献   
3.
A solution to the problem on the stability according to the flexural buckling mode is given for a cylindrical sandwich shell with a transversely soft core of arbitrary thickness. The shell is under the action of a temperature field inhomogeneous across the thickness, and its end faces are fastened in such a way (in the axial direction, the face sections of the external layer are fixed, but of the internal one are free) that an inhomogeneous subcritical stress-strain state arises in the shell across the thickness of its layers. It is shown that, under such conditions, the buckling mode of the shell is mixed flexural. To reveal and investigate this mode, equations of subcritical equilibrium and stability of a corresponding degree of accuracy are needed.Translated from Mekhanika Kompozitnykh Materialov, Vol. 40, No. 6, pp. 715–730, November–December, 2004.  相似文献   
4.
5.
Problems on buckling modes (BMs) are considered for a spherical sandwich shell with thin isotropic external layers and a transversely soft core of arbitrary thickness in a centrosymmetric temperature field inhomogeneous across the shell thickness. For their statement, the two-dimensional equations of the theory of moderate bending of thin Kirchhoff–Love shells are used for the external layers, with regard for their interaction with the core; for the core, maximum simplified geometrically nonlinear equations of thermoelasticity theory, in which a minimum number of nonlinear summands is retained to correctly describe its pure shear BM, are utilized. An exact analytical solution to the problem on initial centrosymmetric deformation of the shell is found, assuming that the temperature increments in the external layers are constant across their thickness. It is shown that the three-dimensional equations for the core, linearized in the neighborhood of the solution, can be integrated along the radial coordinate and reduced to two two-dimensional differential equations, which supplement the six equations that describe the neutral equilibrium of the external layers. It is established that the system of eight differential equations of stability, upon introduction of new unknowns in the form of scalar and vortical potentials, splits into two uncoupled sets of equations. The first of them has two kinds of solutions, by which the pure shear BM is described at an identical value of the parameter of critical temperature. The second system describes a mixed flexural BM, whose realization, at definite combinations of determining parameters of the shell and over wide ranges of their variation, is possible for critical parameters of temperature by orders of magnitude exceeding the similar parameter of shear BM.  相似文献   
6.
The dependence of the gas-kinetic coefficients on the accuracy of calculating the thermal and viscous Chapman functions for the case of a simple gas in the neighborhood of a plane rigid surface is studied. Expressions for the gas-kinetic coefficients are obtained by solving the Boltzmann equation using the Loyalka method. In order to find the temperature jump we use boundary conditions which take into account the accommodation both on the energy and the momentum. The effect of the accuracy of solving the integral equations for the thermal and viscous functions on the value of the temperature jump and the thermal and isothermal slip coefficients was studied by taking into account one, two or three terms in expansions of these functions in Sonine polynomials. The dependence of the results on the choice of the molecule interaction potential model is analyzed.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 190–198, March–April, 1995.  相似文献   
7.
8.
We consider the problem of static and dynamic buckling modes of thin shells under external hydrostatic pressure. If the statement of the problem uses the linearized equations of motion obtained in the moderately large bending theory of shells according to the classical or refined model, then part of terms related to the external load in these equations are assumed to be conservative, and the other terms are assumed to be nonconservative. In this connection, we study four statements of the elastic stability problem for a cylindrical shell with hinged faces. The first of them is the statement of the static boundary value problem in the sense of Euler, where the action of external pressure is assumed to be conservative. The second statement is used to study small vibrations near the static equilibrium by a dynamic method for the same conservative load. The third and fourth statements of the problem correspond to the action of a nonconservative load and are similar to the first and second statements, respectively. They use the linearized equations of equilibrium and motion constructed earlier in a consistent version on the basis of a Timoshenko type model and allowing one to reveal all classical and nonclassical shell buckling modes.  相似文献   
9.
Exact analytical solutions to the problems on the formation of an axisymmetric stress-strain state (SSS) in a circular cylindrical sandwich shell under the action of a temperature field inhomogeneous across its thickness are obtained. It is assumed that the end cross sections of the upper load-carrying layer are immobile in the axial direction, whereas those of the lower load-carrying layer are free. By virtue of the small relative thickness, the outer layers are assumed momentless. The transversely soft filler has an arbitrary thickness, and its SSS is described by equations of thermoelasticity simplified according to the model accepted for it. The boundary conditions stated for the transverse (radial) direction at shell ends correspond either to a free edge or to the presence of a diaphragm.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号