首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
力学   7篇
数学   12篇
物理学   5篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2003年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
The authors study the large time asymptotics of a solution of the Fisher-KPP reaction-diffusion equation,with an initial condition that is a compact perturbation of a step function.A well-known result of Bramson states that,in the reference frame moving as 2t-(3/2) log t+x∞,the solution of the equation converges as t-→ +o∞ to a translate of the traveling wave corresponding to the minimal speed c* =2.The constant x∞ depends on the initial condition u(0,x).The proof is elaborate,and based on probabilistic arguments.The purpose of this paper is to provide a simple proof based on PDE arguments.  相似文献   
2.
We study an eigenvalue problem associated with a reaction-diffusion-advection equation of the KPP type in a cellular flow. We obtain upper and lower bounds on the eigenvalues in the regime of a large flow amplitude A ≪ 1. It follows that the minimal pulsating traveling front speed c *(A) satisfies the upper and lower bounds C 1 A 1/4c *(A)≦ C 2 A 1/4. Physically, the speed enhancement is related to the boundary layer structure of the associated eigenfunction – accordingly, we establish an “averaging along the streamlines” principle for the unique positive eigenfunction.  相似文献   
3.
We consider a classical integro-differential equation that arises in various applications as a model for cell-division or fragmentation. In biology, it describes the evolution of the density of cells that grow and divide. We prove the existence of a stable steady distribution (first positive eigenvector) under general assumptions in the variable coefficients case. We also prove the exponential convergence, for large times, of solutions toward such a steady state.  相似文献   
4.
Many phenomena in biology involve both reactions and chemotaxis. These processes can clearly influence each other, and chemotaxis can play an important role in sustaining and speeding up the reaction. However, to the best of our knowledge, the question of reaction enhancement by chemotaxis has not yet received extensive treatment either analytically or numerically. We consider a model with a single density function involving diffusion, advection, chemotaxis, and absorbing reaction. The model is motivated, in particular, by studies of coral broadcast spawning, where experimental observations of the efficiency of fertilization rates significantly exceed the data obtained from numerical models that do not take chemotaxis (attraction of sperm gametes by a chemical secreted by egg gametes) into account. We prove that in the framework of our model, chemotaxis plays a crucial role. There is a rigid limit to how much the fertilization efficiency can be enhanced if there is no chemotaxis but only advection and diffusion. On the other hand, when chemotaxis is present, the fertilization rate can be arbitrarily close to being complete provided that the chemotactic attraction is sufficiently strong. Moreover, an interesting feature of the estimates on fertilization rate and timescales in the chemotactic case is that they do not depend on the amplitude of the reaction term.  相似文献   
5.
6.
7.
We consider scattering of a pulse propagating through a three-dimensional random media and study the shape of the pulse in the parabolic approximation. We show that, similarly to the one-dimensional O’Doherty–Anstey theory, the pulse undergoes a deterministic broadening. Its amplitude decays only algebraically and not exponentially in time, due to the signal low/midrange frequency component. We also argue that the parabolic approximation captures the front evolution (but not the signal away from the front) correctly even in the fully three-dimensional situation.  相似文献   
8.
We consider an elliptic eigenvalue problem with a fast cellular flow of amplitude A  , in a two-dimensional domain with L2L2 cells. For fixed A  , and L→∞L, the problem homogenizes, and has been well studied. Also well studied is the limit when L   is fixed, and A→∞A. In this case the solution equilibrates along stream lines.  相似文献   
9.
We consider convective systems in a bounded domain, in which viscous fluids described by the Stokes system are coupled using the Boussinesq approximation to a reaction-advection-diffusion equation for the temperature. We show that the resulting flows possess relaxation-enhancing properties in the sense of [CoKRZ]. In particular, we show that solutions of the nonlinear problems become small when gravity is sufficiently strong due to the improved interaction with the cold boundary. As an application, we deduce that the explosion threshold for power-like nonlinearities tends to infinity in the large Rayleigh number limit. We also discuss the behavior of the principal eigenvalues of the corresponding advection-diffusion problem and the quenching phenomenon for reaction-diffusion equations. Received: March 2007, Revision: May 2007, Accepted: May 2007  相似文献   
10.
We consider fluctuations of the solution W ε (t, x, k) of the Wigner equation which describes energy evolution of a solution of the Schrödinger equation with a random white noise in time potential. The expectation of W ε (t, x, k) converges as ε → 0 to \({\bar{W}(t,x,k)}\) which satisfies the radiative transport equation. We prove that when the initial data is singular in the x variable, that is, W ε (0, x, k) = δ(x)f(k) and \({f\in {\mathcal{S}}(\mathbb{R}^d)}\), then the laws of the rescaled fluctuation \({Z_\varepsilon(t):=\varepsilon^{-1/2}[W_\varepsilon(t,x,k)-\bar{W}(t,x,k)]}\) converge, as ε → 0+, to the solution of the same radiative transport equation but with a random initial data. This complements the result of [6], where the limit of the covariance function has been considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号