首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   1篇
数学   2篇
  2023年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Efficient formulas for computing the probabilities of finding exactly electrons in an arbitrarily chosen volume 3 for Hartree–Fock wavefunctions are presented. These formulas allow the use of shape optimization techniques, such as level set methods, for optimizing with respect to various criteria involving such probabilities. The criterion defined as the difference between the Hartree–Fock and the independent-particle model probabilities of finding electrons in stresses the quantum effects due to the Pauli principle. We have implemented a 2D level set method for optimizing this criterion in order to study spatial separation of electron pairs in linear molecules. The method is described and the illustrative example of the BH molecule is reported.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   
2.
This paper proposes a framework for dealing with several problems related to the analysis of shapes. Two related such problems are the definition of the relevant set of shapes and that of defining a metric on it. Following a recent research monograph by Delfour and Zolésio [11], we consider the characteristic functions of the subsets of R2 and their distance functions. The L2 norm of the difference of characteristic functions, the L and the W1,2 norms of the difference of distance functions define interesting topologies, in particular the well-known Hausdorff distance. Because of practical considerations arising from the fact that we deal with image shapes defined on finite grids of pixels, we restrict our attention to subsets of 2 of positive reach in the sense of Federer [16], with smooth boundaries of bounded curvature. For this particular set of shapes we show that the three previous topologies are equivalent. The next problem we consider is that of warping a shape onto another by infinitesimal gradient descent, minimizing the corresponding distance. Because the distance function involves an inf, it is not differentiable with respect to the shape. We propose a family of smooth approximations of the distance function which are continuous with respect to the Hausdorff topology, and hence with respect to the other two topologies. We compute the corresponding Gâteaux derivatives. They define deformation flows that can be used to warp a shape onto another by solving an initial value problem.We show several examples of this warping and prove properties of our approximations that relate to the existence of local minima. We then use this tool to produce computational definitions of the empirical mean and covariance of a set of shape examples. They yield an analog of the notion of principal modes of variation. We illustrate them on a variety of examples.  相似文献   
3.
Foundations of Computational Mathematics - Compressed sensing (CS) ensures the recovery of sparse vectors from a number of randomized measurements proportional to their sparsity. The initial theory...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号