首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   6篇
数学   1篇
  2016年   1篇
  2013年   1篇
  2007年   2篇
  2006年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The complexes [Ru(CN)4(HAT)]2-, [{Ru(CN)4}2(mu2-HAT)]4- and [{Ru(CN)4}3(mu3-HAT)]6- (HAT = hexaaza-triphenylene) contain four, eight and twelve externally-directed cyanide ligands, respectively; they show strongly solvatochromic and intense MLCT absorptions, and [3]6- forms a high-dimensionality cyanide-bridged coordination network with Nd(III), in which Ru --> Nd energy transfer results in sensitised near-IR luminescence.  相似文献   
2.
Reaction of the cyanoruthenate anions [Ru(bpym)(CN)4]2- and [[Ru(CN)4]2(mu-bpym)]4- (bpym = 2,2'-bipyrimidine) with lanthanide(III) salts resulted in the crystallization of coordination networks based on Ru-CN-Ln bridges. Four types of structure were obtained: [Ru(bpym)(CN)4][Ln(NO3)(H2O)5] (Ru-Ln; Ln = Sm, Nd, and Gd) are one-dimensional helical chains; [Ru(bpym)(CN)4]2[Ln(NO3)(H2O)2][Ln(NO3)(0.5)(H2O)(5.5)](NO3)(0.5).5.5H2O (Ru-Ln; Ln = Er and Yb) are two-dimensional sheets containing cross-linked chains based on Ru2Ln2(mu-CN)4 diamond units, which are linked into one-dimensional chains via shared Ru atoms; [[Ru(CN)4]2(mu-bpym)][Ln(NO3)(H2O)5]2.3H2O (Ru2-Ln; Ln = Nd and Sm) are one-dimensional ladders with parallel Ln-NC-Ru-CN-Ln-NC strands connected by the bipyrimidine "cross pieces" acting as rungs on the ladder; and [[Ru(CN)4]2(mu-bpym)][Ln(H2O)6](0.5)[Ln(H2O)4](NO3)(0.5).nH2O (Ru2-Ln; Ln = Eu, Gd, and Yb; n = 8.5, 8.5, and 8, respectively) are three-dimensional networks in which two-dimensional sheets of Ru2Ln2(mu-CN)4 diamonds are connected via cyanide bridges to Ln(III) ions between the layers. Whereas Ru-Gd shows weak triplet metal-to-ligand charge-transfer (3MLCT) luminescence in the solid state from the Ru-bipyrimidine chromophore, in Ru-Nd, Ru-Er, and Ru-Yb, the Ru-based emission is quenched, and all of these show, instead, sensitized lanthanide-based near-IR luminescence following a Ru --> Ln energy transfer. Similarly, Ru2-Nd and Ru2-Yb show lanthanide-based near-IR emission following excitation of the Ru-bipyrimidine chromophore. Time-resolved luminescence measurements suggest that the Ru --> Ln energy-transfer rate is faster (when Ln = Yb and Er) than in related complexes based on the [Ru(bipy)(CN)4]2- chromophore, because the lower energy of the Ru-bpym 3MLCT provides better spectroscopic overlap with the low-energy f-f states of Yb(III) and Er(III). In every case, the lanthanide-based luminescence is relatively short-lived as a result of the CN oscillations in the lattice.  相似文献   
3.
The tritopic bridging ligand hexaazatriphenylene (HAT) has been used to prepare the mono-, di-, and trinuclear cyanoruthenate complexes [Ru(CN)(4)(HAT)](2-) ([1](2-)), [{Ru(CN)(4)}(2)(mu(2)-HAT)](4-) ([2](4-)), and [{Ru(CN)(4)}(3)(mu(3)-HAT)](6-) ([3](6-)). These complexes are of interest both for their photophysical properties and ability to act as sensitizers, associated with strong MLCT absorptions; and their structural properties, with up to 12 externally directed cyanide ligands at a single "node" for preparation of coordination networks. The complexes are strongly solvatochromic, with broad and intense MLCT absorption manifolds arising from the presence of low-lying pi* orbitals on the HAT ligand, as confirmed by DFT calculations; in aprotic solvents [3](6-) is a panchromatic absorber of visible light. Although nonluminescent in fluid solution, the lowest MLCT excited states have lifetimes in D(2)O of tens of nanoseconds and could be detected by time-resolved IR spectrosocopy. For dinuclear [2](4-) and trinuclear [3](6-) the TRIR spectra are indicative of asymmetric MLCT excited states containing distinct Ru(III) and Ru(II) centers on the IR time scale. The complexes show red (3)MLCT luminescence as solids and in EtOH/MeOH glass at 77 K. Ln(III) salts of [1](2-), [2](4-), and [3](6-) form infinite coordination networks based on Ru-CN-Ln bridges with a range of one-, two-, and three-dimensional polymeric structures. In the Yb(III) and Nd(III) salts of [3](6- )the complex anion forms an 8-connected node. Whereas all of the Gd(III) salts show strong (3)MLCT luminescence in the solid state, the Ru-based emission in the Nd(III) and Yb(III) analogues is substantially quenched by Ru --> Ln photoinduced energy transfer, which results in sensitized near-infrared luminescence from Yb(III) and Nd(III).  相似文献   
4.
This paper reports time-resolved infrared (TRIR) spectroscopic studies on a series of weakly luminescent or nonluminescent 2,2'-bipyrimidine-based complexes to probe their electronic structure and the dynamic behavior of their excited states on the picosecond and nanosecond time scales. The complexes are mononuclear [Re(CO)3Cl(bpm)] (1), [Ru(CN)4(bpm)]2- (2), and [Ru(bpyam)2(bpm)]2+ (3) [bpm=2,2'-bipyrimidine; bpyam=2,2'-bipyridine-4,4'-(CONEt2)2] and their homodinuclear analogues [{Re(CO)3Cl}2(mu-bpm)] (4), [{Ru(CN)4}2(mu-bpm)]2- (5), and [{Ru(bpyam)2}2(mu-bpm)]4+ (6). Complex 1 shows the characteristic shift of the three nu(CO) bands to higher energy in the Re-->bpm triplet metal-to-ligand charge-transfer (3MLCT) state, which has a lifetime of 1.2 ns. In contrast, the dinuclear complex 4 shows nu(CO) transient bands to both higher and lower energy than the ground state indicative of, on the IR time scale, an asymmetric excited state [(OC)3ClReI(bpm*-)ReII(CO)3Cl] whose lifetime is 46 ps. The cyanoruthenate complexes 2 and 5 show comparable behavior, with a shift of the nu(CN) bands to higher energy in the excited state for mononuclear 2 but two sets of transient bands-one to higher energy and one to lower energy-in dinuclear 5, consistent with an asymmetric charge distribution [(NC)4RuII(bpm*-)RuIII(CN)4]4- in the 3MLCT state. These cyanoruthenate complexes have much longer lifetimes in D2O compared with CH3CN, viz., 250 ps and 3.4 ns for 2 and 65 ps and 1.2 ns for 5 in CH3CN and D2O, respectively. In complex 3, both higher-energy Ru-->bpyam and lower-energy Ru-->bpm 3MLCT states are formed following 400 nm excitation; the former decays rapidly (tau=6-7 ps) to the latter, and the subsequent decay of the Ru-->bpm 3MLCT state occurs with a lifetime of 60 or 97 ns in D2O or CH3CN, respectively. Similar behavior is shown by dinuclear 6 in both D2O and CH3CN, with initial interconversion from the Ru-->bpyam to the Ru-->bpm 3MLCT state occurring with tau approximately 7 ps and the resultant Ru-->bpm 3MLCT state decaying on the nanosecond time scale.  相似文献   
5.
A class of infinite dimensional Ornstein-Uhlenbeck processes that arise as solutions of stochastic partial differential equations with noise generated by measure-valued catalytic processes is investigated. It will be shown that the catalytic Ornstein-Uhlenbeck process with super-Brownian catalyst in one dimension arises as a high density fluctuation limit of a super-Brownian motion in a super-Brownian catalyst with immigration. The main tools include Laplace transformations of stochastic processes, analysis of a non-linear partial differential equation and techniques on continuity and regularity based on properties of the Sobolev spaces.  相似文献   
6.
7.
A series of complexes of the type K(2)[Ru(NN)(CN)(4)] has been prepared, in which NN is a diimine ligand, and were investigated for both their structural and photophysical properties. The ligands used (and the abbreviations for the resulting complexes) are 3-(2-pyridyl)pyrazole (Ru-pypz), 2,2'-bipyrimidine (Ru-bpym), 5,5'-dimethyl-2,2'-bipyridine (Ru-dmb), 1-ethyl-2-(2-pyridyl)benzimidazole (Ru-pbe), bidentate 2,2':6',2'-terpyridine (Ru-tpy). The known complexes with = 2,2'-bipyridine (Ru-bpy) and 1,10-phenathroline (Ru-phen) were also included in this work. A series of crystallographic studies showed that the [Ru(NN)(CN)(4)](2-) complex anions form a range of elaborate coordination networks when crystallised with either K(+) or Ln(3+) cations. The K(+) salts are characterised by a combination of near-linear Ru-CN-K bridges, with the cyanides coordinating to K(+) in the usual 'end-on' mode, and unusual side-on pi-type coordination of cyanide ligands to K(+) ions. With Ln(3+) cations in contrast only Ru-CN-Ln near-linear bridges occurred, affording 1-dimensional helical or diamondoid chains, and 2-dimensional sheets constituted from linked metallamacrocyclic rings. All of the K(2)[Ru(CN)(4)] complexes show a reversible Ru(II)/Ru(III) couple (ca.+0.9 V vs. Ag/AgCl in water), the exception being Ru-tpy whose oxidation is completely irreversible. Luminescence studies in water showed the presence of (3)MLCT-based emission in all cases apart from Ru-bpym with lifetimes of tens/hundreds of nanoseconds. Time-resolved infrared studies showed that in the (3)MLCT excited state the principal C-N stretching vibration shifts to positive energy by ca. 50 cm(-1) as a consequence of the transient oxidation of the metal centre to Ru(III) and the reduction in back-bonding to the cyanide ligands; measurement of transient decay rates allowed measurements of (3)MLCT lifetimes for those complexes which could not be characterised by luminescence spectroscopy. A few complexes were also examined in different solvents (MeCN, dmf) and showed much weaker emission and shorter excited-state lifetimes in these solvents compared to water.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号