首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   2篇
数学   1篇
物理学   3篇
  2014年   1篇
  2006年   1篇
  2005年   1篇
  2002年   2篇
  1992年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Experiments with the long-lived, high-K isomer 178Hfm2 have been recognized as intriguing tests of multi-quasiparticle state structures and their interactions with external radiation. A triggered release of the energy stored by this isomer, 2.5 MeV per nucleus or 1.2 GJ/gram, in the form of a gamma-ray burst might prove valuable for numerous applications. The observation of “accelerated” decay of 178Hfm2 during irradiation by 90-keV bremsstrahlung has already been reported, but with poor statistical accuracy due to the experimental approach. That approach employed single Ge detectors to seek increases in the areas of peaks at energies corresponding to transitions in the spontaneous decay of the isomer. The need for better quality data to confirm those results has motivated the development of improved detection concepts. One such concept was utilized here to perform an initial search for low-energy (<20 keV) triggered gamma emission from 178Hfm2 using the YSU miniball detector array. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
In lab-on-a-chip applications, filtration is currently performed prior to sample loading or through pre-cast membranes adhered to the substrate. These membranes cannot be patterned to micrometer resolution, and their adhesion may be incompatible with the fabrication process or may introduce contaminants. We have developed an on-chip separation process using a biocompatible polymer that can be patterned and has controllable molecular rejection properties. We spun cast cellulose acetate (CA) membranes directly onto silicon wafers. Characterization of the molecular flux across the membrane showed that molecular weight and charge are major factors contributing to the membranes' rejection characteristics. Altering casting conditions such as polymer concentration in the casting solution and the quenching-bath composition and/or temperature allowed control of the molecular weight cut-off (MWCO). Three MWCOs; 300, 350, and 700 Da have been achieved for non-linear molecules. Molecular shape is also very important as much higher molecular weight single-stranded DNA was electrophoresed across the membranes while heme with a similar negative charge density was rejected. This was due to DNA's small molecular cross section. This is an important result because heme inhibits polymerase chain reactions (PCR) reducing the detection and characterization of DNA from blood samples.  相似文献   
4.
Students learn norms of proving by observing teachers generating proofs, engaging in proving, and generalizing features of proofs deemed convincing by an authority, such as a textbook. Students at all grade levels have difficulties generating valid proof; however, little research exists on students' understandings about what makes a mathematical argument convincing prior to more formal instruction in methods of proof. This study investigated middle‐school students' (ages 12–14) evaluations of arguments for a statement in number theory. Students evaluated both an empirical and a general argument in an interview setting. The results show that students tend to prefer empirical arguments because examples enhance an argument's power to show that the statement is true. However, interview responses also reveal that a significant number of students find arguments to be most convincing when examples are supported with an explanation that “tells why” the statement is true. The analysis also examined the alignment of students' reasons for choosing arguments as more convincing along with the strategies they employ to make arguments more convincing. Overall, the findings show middle‐school students' conceptions about what makes arguments convincing are more sophisticated than their performance in generating arguments suggests.  相似文献   
5.
The endothelial cells comprising brain capillaries have extremely tight intercellular junctions which form an essentially impermeable barrier to passive transport of water soluble molecules between the blood and brain. Several in vitro models of the blood-brain barrier (BBB) have been studied, most utilizing commercially available polymer membranes affixed to plastic inserts. There is mounting evidence that direct contact between endothelial cells and astrocytes, another cell type found to have intimate interaction with the brain side of BBB capillaries, is at least partially responsible for the development of the tight intercellular junctions between BBB endothelial cells. However, the membranes commonly used for BBB in vitro models are lacking certain attributes that would permit a high degree of direct contact between astrocytes and endothelial cells cultured on opposing sides. This work is based on the hypothesis that co-culturing endothelial and astrocyte cells on opposite sides of an ultra-thin, highly porous membrane will allow for increased direct interaction between the two cell types and therefore result in a better model of the BBB. We used standard nanofabrication techniques to make membranes from low-stress silicon nitride that are at least an order of magnitude thinner and at least two times more porous than commercial membrane inserts. An experimental survey of pore sizes for the silicon nitride membranes suggested pores approximately 400 nm in diameter are adequate for restricting astrocyte cell bodies to the seeded side while allowing astrocyte processes to pass through the pores and interact with endothelial cells on the opposite side. The inclusion of a spun-on, cross-linked collagen membrane allowed for astrocyte attachment and culture on the membranes for over two weeks. Astrocytes and endothelial cells displayed markers specific to their cell types when grown on the silicon nitride membranes. The transendothelial electrical resistances, a measure of barrier tightness, of endothelial and astrocyte co-cultures on the silicon nitride membranes were comparable to the commercial membranes, but neither system showed synergy between the two cell types in forming a tighter barrier. This lack of synergy may have been due to the loss of ability of commercially available primary bovine brain microvascular endothelial cells to respond to astrocyte differentiating signals.  相似文献   
6.
Preliminary survey experiments have been performed to examine the triggering of gamma emission from the 31-year Hf-178m2 isomer using intense monochromatic synchrotron radiation from the X15A beamline at the National Synchrotron Light Source at Brookhaven National Laboratory. Initial studies were performed to probe incident photon energies over the L 1, L 2, and L 3 X-ray edges of Hf and the 12–13 keV range. Resonances larger than the experimental minimum detectable level of 10−25 cm2 keV were not observed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号