首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   7篇
化学   101篇
力学   3篇
数学   6篇
物理学   36篇
  2023年   4篇
  2022年   1篇
  2021年   5篇
  2020年   8篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   11篇
  2014年   6篇
  2013年   6篇
  2012年   13篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   29篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
1.
2.
The structure and rotational barrier for the mesityl-silicon bond of 2,2-dimesityl-1,1,1,3,3,3-hexamethyltrisilane have been investigated by 1H- and 13C-variable temperature nuclear magnetic resonance (NMR) as well as by density functional theory structural calculations. The calculations show that the lowest energy structure has C2 symmetry with nonequivalent ortho methyl groups, consistent with the crystal structure and solution NMR. The nonequivalent ortho methyl groups exchange through a Cs transition state with a calculated relative free energy of 11.0 kcal mol−1. The barrier for this rotation found by dynamic NMR is 13.4 ± 0.2 kcal mol−1 at 298 K.  相似文献   
3.
Perchlorate is a compound of increasing concern as an environmental contaminant and is being regulated at increasingly stringent levels. Reliable methods are needed to consistently analyze perchlorate at low concentration levels. This research investigates the use of solid-phase extraction cartridges as an alternative to large-volume injection loops to achieve low-level (microg/L level) perchlorate quantitation. The method involves commercially available strong anion exchange (SAX) cartridges. Water samples are filtered (100 to 1000 mL) using the cartridge, which removes the perchlorate from the solution by anion exchange. Then, after the desired volume is filtered, the perchlorate is extracted using 4 mL of 1% NaOH. In addition, a cleanup method is developed to remove competing anions (chloride, sulfate, and carbonate) that are often found in environmental samples. Analyses are performed with an ion chromatograph using a 10-microL injection loop, yielding a perchlorate method detection limit (MDL) of 210 microg/L. One-liter volumes of a 2-microg/L perchlorate spiked deionized water solution are filtered with SAX SPE. Following extraction and analysis, an MDL of 0.82 microg/L is obtained, comparable to that found for 1-mL injection loop systems (reported as low as 0.53 microg/L). MDL studies are then conducted on perchlorate-amended groundwater (solution concentration of 70 microg/L) and surface water (solution concentration of 10 microg/L) using a filtration volume of 200 mL. The MDLs are 6.7 microg/L for the groundwater and 2.4 microg/L for the surface water.  相似文献   
4.
Redox-active metal–organic frameworks (MOFs) are promising materials for a number of next-generation technologies, and recent work has shown that redox manipulation can dramatically enhance electrical conductivity in MOFs. However, ligand-based strategies for controlling conductivity remain under-developed, particularly those that make use of reversible redox processes. Here we report the first use of ligand n-doping to engender electrical conductivity in a porous 3D MOF, leading to tunable conductivity values that span over six orders of magnitude. Moreover, this work represents the first example of redox switching leading to reversible conductivity changes in a 3D MOF.

Redox-active ligands are used to reversibly tune electrical conductivity in a porous 3D metal–organic framework (MOF).  相似文献   
5.
Computational design of protein catalysts with enhanced stabilities for use in research and enzyme technologies is a challenging task. Using force-field calculations and phylogenetic analysis, we previously designed the haloalkane dehalogenase DhaA115 which contains 11 mutations that confer upon it outstanding thermostability (Tm = 73.5 °C; ΔTm > 23 °C). An understanding of the structural basis of this hyperstabilization is required in order to develop computer algorithms and predictive tools. Here, we report X-ray structures of DhaA115 at 1.55 Å and 1.6 Å resolutions and their molecular dynamics trajectories, which unravel the intricate network of interactions that reinforce the αβα-sandwich architecture. Unexpectedly, mutations toward bulky aromatic amino acids at the protein surface triggered long-distance (∼27 Å) backbone changes due to cooperative effects. These cooperative interactions produced an unprecedented double-lock system that: (i) induced backbone changes, (ii) closed the molecular gates to the active site, (iii) reduced the volumes of the main and slot access tunnels, and (iv) occluded the active site. Despite these spatial restrictions, experimental tracing of the access tunnels using krypton derivative crystals demonstrates that transport of ligands is still effective. Our findings highlight key thermostabilization effects and provide a structural basis for designing new thermostable protein catalysts.

Illustration of cooperative thermostabilization effects of the double-lock system that: (i) induced backbone changes, (ii) closed the molecular gates, (iii) reduced the volumes of the main and slot access tunnels, and (iv) occluded the active site.  相似文献   
6.
7.
Lanthanide complexes have been developed and are reported herein. These complexes were derived from a terpyridine-functionalized calix[4]arene ligand, chelated with Tb3+ and Eu3+. Synthesis of these complexes was achieved in two steps from a calix[4]arene derivative: (1) amide coupling of a calix[4]arene bearing carboxylic acid functionalities and (2) metallation with a lanthanide triflate salt. The ligand and its complexes were characterized by NMR (1H and 13C), fluorescence and UV-vis spectroscopy as well as MS. The photophysical properties of these complexes were studied; high molar absorptivity values, modest quantum yields and luminescence lifetimes on the ms timescale were obtained. Anion binding results in a change in the photophysical properties of the complexes. The anion sensing ability of the Tb(III) complex was evaluated via visual detection, UV-vis and fluorescence studies. The sensor was found to be responsive towards a variety of anions, and large binding constants were obtained for the coordination of anions to the sensor.  相似文献   
8.
We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers.
Figure
115F  相似文献   
9.
Poly(ethylene‐co‐vinyl acetate) (EVA) plastic films are widely used for solar coverings including photovoltaic modules and commercial greenhouse films, but are poor at controlling heat flow. In this work, silica aerogel (SA) nanogels were examined for preparing transparent heat retention EVA films that block far infrared spectra radiation to maintain heat, without compromising the optical performance of the films. SA nanogels were melt‐mixed using a mini twin‐screw extruder with EVA pellets to form SA/EVA composite, which were pressed into thin films with controlled thickness. The composite films were characterized in terms of optical properties using a variety of analytical methods including FTIR, UV–Vis spectroscopy, electron, confocal, and atomic force microscopy. Both thermicity and thermal conductivity of commercial and experimental SA/EVA films were measured. The results demonstrated that the SA/EVA films gave improved infrared retention compared to commercial thermal plastic films without compromising visible light transmission, showing the potential for this approach in next generation heat retention films. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 927–935  相似文献   
10.
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号