首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
数学   30篇
物理学   2篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
排序方式: 共有32条查询结果,搜索用时 234 毫秒
1.
2.
This paper considers a like-queue production system in which server vacations and breakdowns are possible. The decision-maker can turn a single server on at any arrival epoch or off at any service completion. We model the system by an M[x]/M/1 queueing system with N policy. The server can be turned off and takes a vacation with exponential random length whenever the system is empty. If the number of units waiting in the system at any vacation completion is less than N, the server will take another vacation. If the server returns from a vacation and finds at least N units in the system, he immediately starts to serve the waiting units. It is assumed that the server breaks down according to a Poisson process and the repair time has an exponential distribution. We derive the distribution of the system size through the probability generating function. We further study the steady-state behavior of the system size distribution at random (stationary) point of time as well as the queue size distribution at departure point of time. Other system characteristics are obtained by means of the grand process and the renewal process. Finally, the expected cost per unit time is considered to determine the optimal operating policy at a minimum cost. The sensitivity analysis is also presented through numerical experiments.  相似文献   
3.
This paper examines a discrete-time Geo/G/1 queue, where the server may take at most J − 1 vacations after the essential vacation. In this system, messages arrive according to Bernoulli process and receive corresponding service immediately if the server is available upon arrival. When the server is busy or on vacation, arriving messages have to wait in the queue. After the messages in the queue are served exhaustively, the server leaves for the essential vacation. At the end of essential vacation, the server activates immediately to serve if there are messages waiting in the queue. Alternatively, the server may take another vacation with probability p or go into idle state with probability (1 − p) until the next message arrives. Such pattern continues until the number of vacations taken reaches J. This queueing system has potential applications in the packet-switched networks. By applying the generating function technique, some important performance measures are derived, which may be useful for network and software system engineers. A cost model, developed to determine the optimum values of p and J at a minimum cost, is also studied.  相似文献   
4.
Jau-Chuan Ke  Yunn-Kuang Chu 《Physica A》2008,387(13):3227-3238
Process incapability index Cpp has been proposed in the manufacturing industry to assess process incapability. In industries it is sometimes unable to get large samples, and, hence, the CAN (consistent and asymptotically normal) property of the unbiased estimator for Cpp is missing. In this paper, six bootstrap methods are applied to construct upper confidence bounds (UCBs) of Cpp for short-urn production processes where sample size is small; standard bootstrap (SB), Bayesian bootstrap (BB), bootstrap pivotal (BP), percentile bootstrap (PB), bias-corrected percentile bootstrap (BCPB), and bias-corrected and accelerated bootstrap (BCa). A numerical simulation study is conducted in order to demonstrate the performance of the six various estimation methods. We further investigate the accuracy of the six methods by calculating the relative coverage (defined as the ratio of coverage percentage to average length of UCB). Detailed discussions of simulation results for seven short-run processes are presented. Finally, one real example from Ford Company’s Windsor Casting Plant is used to illustrate the six interval estimation methods.  相似文献   
5.
We consider an M[x]/G/1 queueing system with a startup time, where all arriving customers demand first the essential service and some of them may further demand one of other optional services: Type 1, Type 2, … , and Type J service. The service times of the essential service and of the Type i  (i=1,2,…,J)(i=1,2,,J) service are assumed to be random variables with arbitrary distributions. The server is turned off each time when the system is empty. As soon as a customer or a batch of customers arrives, the server immediately performs a startup which is needed before starting each busy period. We derive the steady-state results, including system size distribution at a random epoch and at a departure epoch, the distributions of idle and busy periods, and waiting time distribution in the queue. Some special cases are also presented.  相似文献   
6.
This paper discusses a discrete-time Geo/G/1 queue, in which the server operates a random threshold policy, namely 〈pN〉 policy, at the end of each service period. After all the messages are served in the queue exhaustively, the server is immediately deactivated until N messages are accumulated in the queue. If the number of messages in the queue is accumulated to N, the server is activated for services with probability p and deactivated with probability (1 − p). Using the generating functions technique, the system state evolution is analyzed. The generating functions of the system size distributions in various states are obtained. Some system characteristics of interest are derived. The long-run average cost function per unit time is analytically developed to determine the joint optimal values of p and N at a minimum cost.  相似文献   
7.
We study a single removable server in an infinite and a finite queueing systems with Poisson arrivals and general distribution service times. The server may be turned on at arrival epochs or off at service completion epochs. We present a recursive method, using the supplementary variable technique and treating the supplementary variable as the remaining service time, to obtain the steady state probability distribution of the number of customers in a finite system. The method is illustrated analytically for three different service time distributions: exponential, 3-stage Erlang, and deterministic. Cost models for infinite and finite queueing systems are respectively developed to determine the optimal operating policy at minimum cost.  相似文献   
8.
9.
This paper models a manufacturing system consisting of M operating machines and S spare machines under the supervision of a group of technicians in a repair facility. Machines fail according to a Poisson process, and the repair (service) process of a failed machine may require more than one phase. In each phase, service times are assumed to be exponentially distributed but may be interrupted when the repair facility encounters unpredictable breakdowns. Two models of manufacturing systems are considered. In the first model, technicians repair failed machines at different rates in each phase. In the second model, a two-phase service system with differing numbers of technicians is considered. Profit functions are developed for both models and optimized by a suitable allocation of the number of machines, spares, and technicians in the system. Finally, a sensitivity analysis (see Cao [X.R. Cao, Realization Probabilities: The Dynamics of Queuing Systems, Springer-Verlag: London, 1994; X.R. Cao, The relations among potentials, perturbation analysis, and Markov decision processes, Discrete Event Dynam. Syst.: Theory Applicat. 8 (1998) 71–87]) is performed to provide an approach that quantifies the impact of changes in the parameters on the profit models.  相似文献   
10.
This paper examines an M[x]/G/1M[x]/G/1 queueing system with a randomized vacation policy and at most J vacations. Whenever the system is empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p   or leaves for another vacation with probability 1-p1-p. This pattern continues until the number of vacations taken reaches J. If the system is empty by the end of the J  th vacation, the server is dormant idly in the system. If there is one or more customers arrive at server idle state, the server immediately starts his services for the arrivals. For such a system, we derive the distributions of important characteristics, such as system size distribution at a random epoch and at a departure epoch, system size distribution at busy period initiation epoch, idle period and busy period, etc. Finally, a cost model is developed to determine the joint suitable parameters (p,J)(p,J) at a minimum cost, and some numerical examples are presented for illustrative purpose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号