首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   4篇
  国内免费   8篇
化学   94篇
力学   6篇
数学   73篇
物理学   33篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   11篇
  2010年   2篇
  2009年   1篇
  2008年   15篇
  2007年   15篇
  2006年   7篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   9篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   8篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有206条查询结果,搜索用时 11 毫秒
1.
We study the uniqueness of minimizing harmonic maps to a closed hemisphere. We are able to describe the boundary data for which there are more than one minimizer, and to describe in these cases the corresponding set of minimizers. This is a limiting case for a former result of W.Jäger and H.Kaul.This article was processed by the author using the Springer-Verlag TEX PJourlg macro package 1991.  相似文献   
2.
Atomic chemisorption of hydrogen and oxygen on the Ni(100) surface has been studied using an Effective Core Potential (ECP) approach described in a previous paper. Clusters of up to 50 nickel atoms have been used to model the surface. The computed chemisorption energies are 62 kcal/mol (exp. 63 kcal/mol) for hydrogen and 106 kcal/mol (exp. 115–130 kcal/mol) for oxygen. Correlating the adsorbate and the cluster-adsorbate bonds is extremely important for obtaining accceptable results, particularly for oxygen. Reasonable convergence of chemisorption energies is obtained with 40–50 cluster atoms for both hydrogen and oxygen. For hydrogen the addition of a third cluster layer stabilizes the results considerably. Both hydrogen and oxygen are adsorbed at (or close to) the four-fold hollow site. The calculated barriers for surface migration are also in good agreement with the experimental estimates. The calculated equilibrium heights above the surface are on the other hand too high compared with experiments. This disagreement is believed to be due to core-valence correlation effects, which are not incorporated in the present ECP. The cluster convergence for the height above the surface is much slower than for the chemisorption energy.  相似文献   
3.
The combinatorial invariant and covariant are introduced as practical tools for analysis of conical intersections in molecules. The combinatorial invariant is a quantity depending on adiabatic electronic states taken at discrete nuclear configuration points. It is invariant to the phase choice (gauge) of these states. In the limit that the points trace a loop in nuclear configuration space, the value of the invariant approaches the corresponding Berry phase factor. The Berry phase indicates the presence of an odd or even number of conical intersections on surfaces bounded by these loops. Based on the combinatorial invariant, we develop a computationally simple and efficient method for locating conical intersections. The method is robust due to its use of gauge invariant nature. It does not rely on the landscape of intersecting potential energy surfaces nor does it require the computation of nonadiabatic couplings. We generalize the concept to open paths and combinatorial covariants for higher dimensions obtaining a technique for the construction of the gauge-covariant adiabatic-diabatic transformation matrix. This too does not make use of nonadiabatic couplings. The importance of using gauge-covariant expressions is underlined throughout. These techniques can be readily implemented by standard quantum chemistry codes.  相似文献   
4.
A class II valence force field covering a broad range of organic molecules has been derived employing ab initio quantum mechanical "observables." The procedure includes selecting representative molecules and molecular structures, and systematically sampling their energy surfaces as described by energies and energy first and second derivatives with respect to molecular deformations. In this article the procedure for fitting the force field parameters to these energies and energy derivatives is briefly reviewed. The application of the methodology to the derivation of a class II quantum mechanical force field (QMFF) for 32 organic functional groups is then described. A training set of 400 molecules spanning the 32 functional groups was used to parameterize the force field. The molecular families comprising the functional groups and, within each family, the torsional angles used to sample different conformers, are described. The number of stationary points (equilibria and transition states) for these molecules is given for each functional group. This set contains 1324 stationary structures, with 718 minimum energy structures and 606 transition states. The quality of the fit to the quantum data is gauged based on the deviations between the ab initio and force field energies and energy derivatives. The accuracy with which the QMFF reproduces the ab initio molecular bond lengths, bond angles, torsional angles, vibrational frequencies, and conformational energies is then given for each functional group. Consistently good accuracy is found for these computed properties for the various types of molecules. This demonstrates that the methodology is broadly applicable for the derivation of force field parameters across widely differing types of molecular structures. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1782-1800, 2001  相似文献   
5.
6.
Photosystem I (PSI) is one of the most studied electron transfer (ET) systems in nature; it is found in plants, algae, and bacteria. The effect of the system structure and its electronic properties on the electron transfer rate and yield was investigated for years in details. In this work we show that not only those system properties affect the ET efficiency, but also the electrons’ spin. Using a newly developed spintronic device and a technique which enables control over the orientation of the PSI monolayer relative to the device (silver) surface, it was possible to evaluate the degree and direction of the spin polarization in ET in PSI. We find high‐spin selectivity throughout the entire ET path and establish that the spins of the electrons being transferred are aligned parallel to their momenta. The spin selectivity peaks at 300 K and vanishes at temperatures below about 150 K. A mechanism is suggested in which the chiral structure of the protein complex plays an important role in determining the high‐spin selectivity and its temperature dependence. Our observation of high light induced spin dependent ET in PSI introduces the possibility that spin may play an important role in ET in biology.  相似文献   
7.
Hybridizing graphene and molecules possess a high potential for developing materials for new applications. However, new methods to characterize such hybrids must be developed. Herein, the wet-chemical non-covalent functionalization of graphene with cationic π-systems is presented and the interaction between graphene and the molecules is characterized in detail. A series of tricationic benzimidazolium salts with various steric demand and counterions was synthesized, characterized and used for the fabrication of graphene hybrids. Subsequently, the doping effects were studied. The molecules are adsorbed onto graphene and studied by Raman spectroscopy, XPS as well as ToF-SIMS. The charged π-systems show a p-doping effect on the underlying graphene. Consequently, the tricationic molecules are reduced through a partial electron transfer process from graphene, a process which is accompanied by the loss of counterions. DFT calculations support this hypothesis and the strong p-doping could be confirmed in fabricated monolayer graphene/hybrid FET devices. The results are the basis to develop sensor applications, which are based on analyte/molecule interactions and effects on doping.  相似文献   
8.
9.
We show that geometric confinement dramatically affects the shear-induced configurations of dense monodisperse colloidal suspensions; a new structure emerges, where layers of particles buckle to stack in a more efficient packing. The volume fraction in the shear zone is controlled by a balance between the viscous stresses and the osmotic pressure of a contacting reservoir of unsheared particles. We present a model that accounts for our observations and helps elucidate the complex interplay between particle packing and shear stress for confined suspensions.  相似文献   
10.
We develop a geometric approach to definable sets in differentially closed fields, with emphasis on the question of orthogonality to a given strongly minimal set. Equivalently, within a family of ordinary differential equations, we consider those equations that can be transformed, by differential-algebraic transformations, so as to yield solutions of a given fixed first-order ODE . We show that this sub-family is usually definable (in particular if lives on a curve of positive genus). As a corollary, we show the existence of many model-complete, superstable theories of differential fields.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号