首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1351219篇
  免费   29551篇
  国内免费   7732篇
化学   672911篇
晶体学   20573篇
力学   75289篇
综合类   104篇
数学   242825篇
物理学   376800篇
  2021年   13496篇
  2020年   15928篇
  2019年   16046篇
  2018年   14070篇
  2016年   28439篇
  2015年   20912篇
  2014年   30409篇
  2013年   74338篇
  2012年   38373篇
  2011年   36364篇
  2010年   38171篇
  2009年   40453篇
  2008年   35547篇
  2007年   31571篇
  2006年   35891篇
  2005年   29860篇
  2004年   30502篇
  2003年   28535篇
  2002年   29308篇
  2001年   28554篇
  2000年   24809篇
  1999年   22543篇
  1998年   21024篇
  1997年   21007篇
  1996年   21119篇
  1995年   19223篇
  1994年   18626篇
  1993年   18184篇
  1992年   18106篇
  1991年   18475篇
  1990年   17609篇
  1989年   17651篇
  1988年   17197篇
  1987年   17202篇
  1986年   16105篇
  1985年   22557篇
  1984年   23776篇
  1983年   19963篇
  1982年   21649篇
  1981年   20870篇
  1980年   20196篇
  1979年   20384篇
  1978年   21677篇
  1977年   21289篇
  1976年   21015篇
  1975年   19682篇
  1974年   19317篇
  1973年   19819篇
  1972年   14324篇
  1967年   12533篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Employing radical bridges between anisotropic metal ions has been a viable route to achieve high-performance single-molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal-field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N -radical-bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N -radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange-coupled SMMs.  相似文献   
2.
3.
4.
5.
A liquid dewetting method for the determination of the viscoelastic properties of ultrathin polymer films has been extended to study thickness effects on the properties of ultrathin polycarbonate (PC) films. PC films with film thicknesses ranging from 4 to 299 nm were placed on glycerol at temperatures from below the macroscopic glass transition temperature (Tg) to above it with the dewetting responses being monitored. It is found that the isothermal creep results for films of the same thickness, but dewetted at different temperatures can be superposed into one master curve, which is consistent with the fact of PC being a thermorheologically simple material. Furthermore, the results show that the Tg of PC thin films is thickness dependent, but the dependence is weaker than the results for freely standing films and similar to literature data for PC films supported on rigid substrates. It was also found that the rubbery plateau region for the PC films stiffens dramatically, but still less than what has been observed for freely standing polycarbonate films. The rubbery stiffening is discussed in terms of a recently reported model that relates macroscopic segmental dynamics with the stiffening. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1559–1566  相似文献   
6.
7.
Given their superior penetration depths, photosensitizers with longer absorption wavelengths present broader application prospects in photodynamic therapy (PDT). Herein, Ag2S quantum dots were discovered, for the first time, to be capable of killing tumor cells through the photodynamic route by near-infrared light irradiation, which means relatively less excitation of the probe compared with traditional photosensitizers absorbing short wavelengths. On modification with polydopamine (PDA), PDA-Ag2S was obtained, which showed outstanding capacity for inducing reactive oxygen species (increased by 1.69 times). With the addition of PDA, Ag2S had more opportunities to react with surrounding O2, which was demonstrated by typical triplet electron spin resonance (ESR) analysis. Furthermore, the PDT effects of Ag2S and PDA-Ag2S achieved at longer wavelengths were almost identical to the effects produced at 660 nm, which was proved by studies in vitro. PDA-Ag2S showed distinctly better therapeutic effects than Ag2S in experiments in vivo, which further validated the enhanced regulatory effect of PDA. Altogether, a new photosensitizer with longer absorption wavelength was developed by using the hitherto-unexplored photodynamic function of Ag2S quantum dots, which extended and enhanced the regulatory effect originating from PDA.  相似文献   
8.
Incorporating nanoscale Si into a carbon matrix with high dispersity is desirable for the preparation of lithium-ion batteries (LIBs) but remains challenging. A space-confined catalytic strategy is proposed for direct superassembly of Si nanodots within a carbon (Si NDs⊂C) framework by copyrolysis of triphenyltin hydride (TPT) and diphenylsilane (DPS), where Sn atomic clusters created from TPT pyrolysis serve as the catalyst for DPS pyrolysis and Si catalytic growth. The use of Sn atomic cluster catalysts alters the reaction pathway to avoid SiC generation and enable formation of Si NDs with reduced dimensions. A typical Si NDs⊂C framework demonstrates a remarkable comprehensive performance comparable to other Si-based high-performance half LIBs, and higher energy densities compared to commercial full LIBs, as a consequence of the high dispersity of Si NDs with low lithiation stress. Supported by mechanic simulations, this study paves the way for construction of Si/C composites suitable for applications in future energy technologies.  相似文献   
9.
Physics of Particles and Nuclei Letters - When creating accelerators and storage-ring installations in a compact space, there is not always enough space for all the necessary magnet elements. In...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号