首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   9篇
数学   2篇
物理学   5篇
  2023年   1篇
  2020年   2篇
  2019年   6篇
  2018年   1篇
  2017年   1篇
  2011年   2篇
  2010年   1篇
  2007年   2篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
The gold nanoparticles (AuNPs) are capable of enhancing the incident laser field in the form of scattered near field for even an off-resonance irradiation where the incident laser wavelength is far away from the localized surface plasmon resonance (LSPR). If the intensity of the pulse laser is large enough, this capability can be employed to generate a highly localized free electron (plasma) in the vicinity of the particles. The generated plasma can absorb more energy during the pulse, and this energy deposition can be considered as an energy source for structural mechanics calculations in the surrounding media to generate a photoacoustic (PA) signal. To show this, in this paper, we model plasma-mediated PA pressure wave propagation from a 100-nm AuNPs and the surrounding media irradiated by an ultrashort pulse laser. In this model, the AuNP is immersed in water and the laser pulse width is ranging from 70 fs to 2 ps at the wavelength of 800 nm (off-resonance). Our results qualitatively show the substantial impact of the energy deposition in plasma on the PA signal through boosting the pressure amplitudes up to ~1000 times compared to the conventional approach.  相似文献   
2.
The tRNA molecule takes suitable amino acid to the ribosome for the formation of peptide bonds. In starting the peptide chain, the first amino acid which is taken to the ribosome is methionine. We have simulated methionine-amino acid bonding and amino acid-tRNA bonding, using a mixed study of quantum mechanics ab-initio and molecular mechanics. NMR shielding tensors and thermodynamic parameters and total energies are also calculated. It is important to understand the physical properties and the environmental conditions in which the dipeptides cause the tRNA to attach to a wrong amino acid. One of the properties studied is the dielectric environment of in which the bonding occurs. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
3.
A. Hatef 《Optics Communications》2011,284(9):2363-5383
In this paper we have developed a theory for the decay of a quantum dot doped in a two-dimensional metallic photonic crystal consisting of two different metallic pillars in an air background medium. This crystal structure forms a full two-dimensional photonic band gap when the appropriate pillar sizes are chosen. The advantage of using two metals is that one can easily control the density of states and optical properties of these photonic crystals by changing the plasma energies of two metals rather than one. Using the Schrödinger equation method and the photonic density of states, we calculated the linewidth broadening and the spectral function of radiation due to spontaneous emission for two-level quantum dots doped in the system. Our results show that by changing the plasma energies one can control spontaneous emission of quantum dots doped in the metallic photonic crystal.  相似文献   
4.
As the field of molecular-scale electronics matures and the prospect of devices incorporating molecular wires becomes more feasible, it is necessary to progress from the simple anchor groups used in fundamental conductance studies to more elaborate anchors designed with device stability in mind. This study presents a series of oligo(phenylene-ethynylene) wires with one tetrapodal anchor and a phenyl or pyridyl head group. The new anchors are designed to bind strongly to gold surfaces without disrupting the conductance pathway of the wires. Conductive probe atomic force microscopy (cAFM) was used to determine the conductance of self-assembled monolayers (SAMs) of the wires in Au–SAM–Pt and Au–SAM–graphene junctions, from which the conductance per molecule was derived. For tolane-type wires, mean conductances per molecule of up to 10−4.37 G0 (Pt) and 10−3.78 G0 (graphene) were measured, despite limited electronic coupling to the Au electrode, demonstrating the potential of this approach. Computational studies of the surface binding geometry and transport properties rationalise and support the experimental results.  相似文献   
5.
Single‐molecule junctions that are sensitive to compression or elongation are an emerging class of nanoelectromechanical systems (NEMS). Although the molecule–electrode interface can be engineered to impart such functionality, most studies to date rely on poorly defined interactions. We focused on this issue by synthesizing molecular wires designed to have chemically defined hemilabile contacts based on (methylthio)thiophene moieties. We measured their conductance as a function of junction size and observed conductance changes of up to two orders of magnitude as junctions were compressed and stretched. Localised interactions between weakly coordinating thienyl sulfurs and the electrodes are responsible for the observed effect and allow reversible monodentate?bidentate contact transitions as the junction is modulated in size. We observed an up to ≈100‐fold sensitivity boost of the (methylthio)thiophene‐terminated molecular wire compared with its non‐hemilabile (methylthio)benzene counterpart and demonstrate a previously unexplored application of hemilabile ligands to molecular electronics.  相似文献   
6.
Together with the more intuitive and commonly recognized conductance mechanisms of charge‐hopping and tunneling, quantum‐interference (QI) phenomena have been identified as important factors affecting charge transport through molecules. Consequently, establishing simple and flexible molecular‐design strategies to understand, control, and exploit QI in molecular junctions poses an exciting challenge. Here we demonstrate that destructive quantum interference (DQI) in meta‐substituted phenylene ethylene‐type oligomers (m‐OPE) can be tuned by changing the position and conformation of methoxy (OMe) substituents at the central phenylene ring. These substituents play the role of molecular‐scale taps, which can be switched on or off to control the current flow through a molecule. Our experimental results conclusively verify recently postulated magic‐ratio and orbital‐product rules, and highlight a novel chemical design strategy for tuning and gating DQI features to create single‐molecule devices with desirable electronic functions.  相似文献   
7.
Total variation (TV) denoising is still attracting attention with theoretical and computational motivations, for its conceptual simplicity of solving a lasso-like convex problem and its good properties for preserving sharp edges and contours in objects with spatial structures like natural images, although more modern and recent techniques specifically tailored to image processing have been developed. TV induces variation-sparsity in the sense that the reconstruction is piecewise constant with a small number of jumps. A threshold parameter λ controls the number of jumps and the quality of the estimation. Since calculation of the TV estimate in high dimension is computationally intensive for a given λ, we propose to calculate the TV estimate for only two sequential λ’s. Our adaptive procedure is based on large deviation of stochastic processes and extreme value theory. We also show that TV can perform exact segmentation in dimension one, under an alternating sign condition for some prescribed threshold. We apply our procedure to denoise a collection of 1D and 2D test signals verifying empirically the effectiveness of our approach. Codes are given to reproduce our results in a provided PURL.  相似文献   
8.
Cumulenes are sometimes described as “metallic” because an infinitely long cumulene would have the band structure of a metal. Herein, we report the single‐molecule conductance of a series of cumulenes and cumulene analogues, where the number of consecutive C=C bonds in the core is n=1, 2, 3, and 5. The [n]cumulenes with n=3 and 5 have almost the same conductance, and they are both more conductive than the alkene (n=1). This is remarkable because molecular conductance normally falls exponentially with length. The conductance of the allene (n=2) is much lower, because of its twisted geometry. Computational simulations predict a similar trend to the experimental results and indicate that the low conductance of the allene is a general feature of [n]cumulenes where n is even. The lack of length dependence in the conductance of [3] and [5]cumulenes is attributed to the strong decrease in the HOMO–LUMO gap with increasing length.  相似文献   
9.
Detection of epileptic seizures is a major challenge of these days. There are lots of papers which pay their attention to this subject. Recently, some dynamical disease with attacks such as epilepsy are considered as a system in which critical slowing down can be seen before their attacks (seizure). Although there are not many researches on the prediction of seizures using this phenomenon. Recently [P. Milanowski, P. Suffczynski, Int. J. Neural Syst. 26, 1650053 (2016)] have investigated the application of critical slowing down indicators and surprisingly they found that only in 8% of nearby 300 epileptic patients have the evidence of critical slowing down before seizures. The main goal of this paper is finding the answer of the important question “can we trust that epileptic seizures are bifurcations in the neural system”. In order to find the answer, different studies on the prediction of seizure are investigated and we prove that features which are used in those papers are critical slowing down indicators although they are not aware of it. So we present some reasons for the occurrence of critical slowing down before the seizure. We hope that this study will be a motivation of future studies on the application of critical slowing down indicators for predicting epileptic seizures.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号