首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   0篇
化学   5篇
数学   67篇
  2013年   2篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
  1993年   1篇
  1991年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   7篇
  1979年   4篇
  1978年   1篇
  1977年   7篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1970年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
  1962年   1篇
  1959年   2篇
  1895年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
Signed graphs for portfolio analysis in risk management   总被引:1,自引:0,他引:1  
We introduce the notion of structural balance for signed graphsin the context of portfolio analysis. A portfolio of securitiescan be represented as a signed graph with the nodes denotingthe securities and the edges representing the correlation betweenthe securities. With signed graphs, the characteristics of aportfolio from a risk management perspective can be uncoveredfor analysis purposes. It is shown that a portfolio characterizedby a signed graph of positive and negative edges that is structurallybalanced is characteristically more predictable. Investors whoundertake a portfolio position with all positively correlatedsecurities do so with the intention to speculate on the upside(or downside). If the portfolio consists of negative edges andis balanced, then it is likely that the position has a hedgingdisposition within it. On the other hand, an unbalanced signedgraph is representative of an investment portfolio which ischaracteristically unpredictable.  相似文献   
2.
The reconstruction numberrn(G) of a graphG was introduced by Harary and Plantholt as the smallest number of vertex-deleted subgraphsG i =G – v i in the deck ofG which do not all appear in the deck of any other graph. For any graph theoretic propertyP, Harary defined theP-reconstruction number of a graph G P as the smallest number of theG i in the deck ofG, which do not all appear in the deck of any other graph inP We now study the maximal planar graph reconstruction numberrn(G), proving that its value is either 1 or 2 and characterizing those with value 1.  相似文献   
3.
Aequationes mathematicae -  相似文献   
4.
A graph satisfies Axiom n if, for any sequence of 2n of its points, there is another point adjacent to the first n and not to any of the last n. We show that, for each n, all sufficiently large Paley graphs satisfy Axiom n. From this we conclude at once that several properties of graphs are not first order, including self-complementarity and regularity.  相似文献   
5.
In this paper we discuss a generalization of the familiar concept of an interval graph that arises naturally in scheduling and allocation problems. We define the interval number of a graph G to be the smallest positive integer t for which there exists a function f which assigns to each vertex u of G a subset f(u) of the real line so that f(u) is the union of t closed intervals of the real line, and distinct vertices u and v in G are adjacent if and only if f(u) and f(v)meet. We show that (1) the interval number of a tree is at most two, and (2) the complete bipartite graph Km, n has interval number ?(mn + 1)/(m + n)?.  相似文献   
6.
LetM be a square matrix whose entries are in some field. Our object is to find a permutation matrixP such thatPM P –1 is completely reduced, i.e., is partitioned in block triangular form, so that all submatrices below its diagonal are 0 and all diagonal submatrices are square and irreducible. LetA be the binary (0, 1) matrix obtained fromM by preserving the 0's ofM and replacing the nonzero entries ofM by 1's. ThenA may be regarded as the adjacency matrix of a directed graphD. CallD strongly connected orstrong if any two points ofD are mutually reachable by directed paths. Astrong component ofD is a maximal strong subgraph. Thecondensation D * ofD is that digraph whose points are the strong components ofD and whose lines are induced by those ofD. By known methods, we constructD * from the digraph,D whose adjacency matrixA was obtained from the original matrixM. LetA * be the adjacency matrix ofD *. It is easy to show that there exists a permutation matrixQ such thatQA * Q –1 is an upper triangular matrix. The determination of an appropriate permutation matrixP from this matrixQ is straightforward.This was an informal talk at the International Symposium on Matrix Computation sponsored by SIAM and held in Gatlinburg, Tennessee, April 24–28, 1961 and was an invited address at the SIAM meeting in Stillwater, Oklahoma on August 31, 1961  相似文献   
7.
8.
The biparticity β(G) of a graph G is the minimum number of bipartite graphs required to cover G. It is proved that for any graph G, β(G) = {log2χ(G)}. In view of the recent announcement of the Four Color Theorem, it follows that the biparticity of every planar graph is 2.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号