首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   12篇
  国内免费   1篇
化学   126篇
晶体学   1篇
力学   13篇
数学   27篇
物理学   33篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   33篇
  2019年   22篇
  2018年   16篇
  2017年   6篇
  2016年   7篇
  2015年   9篇
  2014年   16篇
  2013年   16篇
  2012年   16篇
  2011年   15篇
  2010年   10篇
  2009年   3篇
  2008年   9篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  1991年   1篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
1.
2.
We report the synthesis of iron oxide magnetic nanoparticles (IONPs) coated with various natural amino acids (AAs) using a one‐pot reaction in an aqueous medium. Several AAs, which contained hydrophilic and hydrophobic groups, were selected to study their effects on size, morphology and toxicity of IONPs. Functionalized IONPs were characterized using X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, and scanning and transmission electron microscopies. Furthermore, vibrating sample magnetometry analysis shows these nanoparticles have excellent magnetic properties. Cellular toxicity of IONPs was also investigated on HFF2 cell lines. The AA‐coated IONPs are non‐toxic and biocompatible. Natural AA‐coated IONPs show a potential for their development in in vitro and in vivo biomedical fields due to their non‐toxicity, good ζ‐potential and related small size and narrow size distribution.  相似文献   
3.
The present study deals with preparation and optimization of a novel chitosan hydrogel‐based matrix by suspension cross‐linking method for controlled release of Depo‐Medrol. The controlled release of Depo‐Medrol for effective Rheumatoid arthritis disease has become an imperative field in the drug delivery system. In this context, it was intended to optimize loading circumstances by experimental design and also study the release kinetics of Depo‐Medrol entrapped in the chitosan matrix in order to obtain maximal efficiency for drug loading. The optimum concentrations of chitosan (2.5 g), glutaraldehyde (3.05 μL) and Depo‐Medrol (0.1 mg) were set up to achieve the highest value of drug loaded and the most sustained release from the chitosan matrix. In vitro monitoring of drug release kinetic using high‐performance liquid chromatography showed that 73% of the Depo‐Medrol was released within 120 min, whereas remained drug was released during the next 67 h. High correlation between first‐order and Higuchi's kinetic models indicates a controlled diffusion of Depo‐Medrol through the surrounding media. Moreover, recovery capacity >82% and entrapment efficiency of 58–88% were achieved under optimal conditions. Therefore, the new synthesized Depo Medrol–chitosan is an applicable appliance for arthritis therapy by slow release mechanism. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
4.
In this work, the films of poly(ether-block-amide) (Pebax 1657) and hydrophilic/hydrophobic silica nanoparticles (0–10 wt%) were coated on a poly(vinyl chloride) (PVC) ultrafiltration membrane to form new mixed matrix composite membranes (MMCMs) for CO2/N2 separation. The membranes were characterized by SEM, FTIR, DSC and XRD. Successful formation of a non-porous defect-free dense top layer with ~4 μm of thickness and also uniform dispersion of silica nanoparticles up to 8 wt% loading in Pebax matrix were confirmed by SEM images. The gas permeation results showed an increase in the permeance of all gases and an increase in ideal CO2/N2 selectivity with the increase in silica nanoparticle contents. Comparison between the incorporation of hydrophilic and hydrophobic silica nanoparticle into Pebax matrix revealed that the great enhancement of CO2 solubility is the key factor for the performance improvement of Pebax + silica nanoparticle membranes. The best separation performance of the hydrophilic silica nanoparticle-incorporated Pebax/PVC membrane for pure gases (at 1 bar and 25 °C) was obtained with a CO2 permeability of 124 barrer and an ideal CO2/N2 selectivity of 76, i.e., 63 and 35% higher than those of neat Pebax membrane, respectively. The corresponding values for hydrophobic silica nanoparticle-incorporated Pebax/PVC membrane were 107 barrer for CO2 permeability and 61 for ideal CO2/N2 selectivity. Also the performances of MMCMs improved upon pressure increase (1–10 bar) owing to the shift in plasticizing effect of CO2 towards the higher pressures. In addition, an increase in permeabilities with a decrease in ideal selectivity was observed upon temperature increase (25–50 °C) due to the intensification of chain mobility.  相似文献   
5.
In recent decades, nanotechnology is growing rapidly owing to its widespread application in science and industry. The aim of the experiment was chemical characterization and evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing activities of titanium nanoparticles using aqueous extract of Ziziphora clinopodioides Lam leaves (TiNPs@Ziziphora). These nanoparticles were characterized by fourier transformed infrared spectroscopy (FT‐IR), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectroscopy (EDS), and UV–visible spectroscopy. The synthesized TiNPs@Ziziphora had great cell viability dose‐dependently (Investigating the effect of the plant on human umbilical vein endothelial cells (HUVECs) cell line) and revealed this method was nontoxic. Then, 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging test was done to assess the antioxidant properties, which indicated similar antioxidant potentials for TiNPs@Ziziphora and butylated hydroxytoluene. Agar diffusion tests were applied to determine the antibacterial and antifungal characteristics. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Minimum Fungicidal Concentration (MFC) were specified by macro‐broth dilution assay. The data were analyzed by SPSS 21 software (Duncan post‐hoc test). TiNPs@Ziziphora indicated higher antibacterial and antifungal effects than all standard antibiotics (p ≤ 0.01). Also, TiNPs@Ziziphora inhibited the growth of all bacteria at 2‐16 mg/ml concentrations and removed them at 2‐32 mg/ml concentrations (p ≤ 0.01). In case of antifungal properties of TiNPs@Ziziphora, they prevented the growth of all fungi at 2‐8 mg/ml concentrations and destroyed them at 2‐16 mg/ml concentrations (p ≤ 0.01). In vivo experiment, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control, treatment with Eucerin basal ointment, treatment with 3% tetracycline ointment, treatment with 0.2% TiO2 ointment, treatment with 0.2% Z. clinopodioides ointment, and treatment with 0.2% TiNPs@Ziziphora ointment. These groups were treated for 10 days. For histopathological and biochemical analysis of the healing trend, a 3 × 3 cm section was prepared from all dermal thicknesses at day 10. Use of TiNPs@Ziziphora ointment in the treatment groups substantially reduced (p ≤ 0.01) the wound area, total cells, neutrophil, and lymphocyte and remarkably raised (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate compared to other groups. In conclusion, the results revealed the useful non‐cytotoxic, antioxidant, antibacterial, antifungal, and cutaneous wound healing effects of TiNPs@Ziziphora.  相似文献   
6.
Gold nanoparticles have unique and excellent medical and nonmedical properties and application compared with other metallic nanoparticles. Recently, they have been used for the prevention, control, and treatment of bacterial and fungal diseases. In the recent study, fresh and clean leaves of Allium noeanum Reut. ex Regel leaves have been used for the synthesis of gold nanoparticles. Also, we evaluated the cytotoxicity, antioxidant, and antibacterial properties of HAuCl4, A. noeanum, and the synthesized nanoparticles (Au NPs). These nanoparticles were analyzed by FT‐IR, UV, XRD, EDS, FE‐SEM, and TEM tests. FTIR results offered antioxidant compounds in the plant were the sources of reducing power, reducing gold ions to Au NPs. In TEM images revealed an average diameter of 10‐30 nm. At the beginning of biological experiments, DPPH free radical scavenging test was carried out to examine the antioxidant property. Also, in the bacterial part of this study, the concentration of HAuCl4, A. noeanum, and AuNPs with minimum dilution and no turbidity was considered MIC. To determine MBC, 60 μL of MIC and three preceding chambers were cultured on Muller Hinton Agar. The minimum concentration with no bacterial growth was considered MBC. Au NPs revealed excellent antioxidant potential against DPPH, non‐toxicity property against human umbilical vein endothelial cells, and antibacterial activities against Streptococcus pneumonia, Bacillus subtilis, Staphylococcus aureus, Staphylococcus saprophyticus, Salmonella typhimurium, Pseudomonas aeruginosa, Shigella flexneri, and Escherichia coli O157:H7. These findings show that the inclusion of A. noeanum extract improves the solubility of Au NPs, which led to a notable enhancement in the antioxidant and antibacterial effects.  相似文献   
7.
8.
Research on Chemical Intermediates - In this study, a kind of magnetic Fe3O4@mTiO2-GO (where m was shorted mesoporous) hybrids with core–shell nano-structure for controlled dual targeted drug...  相似文献   
9.
We study Koszul homology over local Gorenstein rings. It is well known that if an ideal is strongly Cohen–Macaulay the Koszul homology algebra satisfies Poincaré duality. We prove a version of this duality which holds for all ideals and allows us to give two criteria for an ideal to be strongly Cohen–Macaulay. The first can be compared to a result of Hartshorne and Ogus; the second is a generalization of a result of Herzog, Simis, and Vasconcelos using sliding depth.  相似文献   
10.
In recent decades, nanotechnology is growing rapidly owing to its widespread application in medical science. The aim of the experiment was the evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing activities of green synthesized manganese nanoparticles using Ziziphora clinopodioides Lam leaves (MnNPs@ZC). The synthesized MnNPs@ZC were characterized using different techniques including UV–Vis., FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometry (EDS). According to the XRD analysis, 48.10 nm was measured for the crystal size of nanoparticles. SEM images exhibited a uniform spherical morphology and size in the range of 47.58 to 70.26 nm for the biosynthesized nanoparticles. MnNPs@ZC revealed excellent non-cytotoxicity effect against human umbilical vein endothelial cells, antioxidant activity against DPPH, antibacterial properties against Gram-negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa, and Escherichia coli O157:H7) and Gram-positive bacteria (Streptococcus pneumonia, Staphylococcus aureus, and Bacillus subtilis), and antifungal potentials against Candida glabrata, Candida albicans, Candida guilliermondii, and Candida krusei. Also, use of MnNPs@ZC ointment decreased significantly (p ≤ 0.01) the wound area, total cells, neutrophil, and lymphocyte and raised significantly (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate compared to other groups in experimental animals. In conclusion, synthesized MnNPs@ZC indicated antibacterial, antifungal, non-cytotoxicity, antioxidant, and cutaneous wound healing effects in a dose-depended manner. After confirming in the clinical trials, these nanoparticles can be used in human for the treatment of cutaneous and infectious diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号