首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
数学   12篇
  2022年   1篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie’s constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ.  相似文献   
2.
We consider the minimization of a convex function on a bounded polyhedron (polytope) represented by linear equality constraints and non-negative variables. We define the Levenberg–Marquardt and central trajectories starting at the analytic center using the same parameter, and show that they satisfy a primal-dual relationship, being close to each other for large values of the parameter. Based on this, we develop an algorithm that starts computing primal-dual feasible points on the Levenberg–Marquardt trajectory and eventually moves to the central path. Our main theorem is particularly relevant in quadratic programming, where points on the primal-dual Levenberg–Marquardt trajectory can be calculated by means of a system of linear equations. We present some computational tests related to box constrained trust region subproblems.  相似文献   
3.
In this work, we introduce a necessary sequential Approximate-Karush-Kuhn-Tucker (AKKT) condition for a point to be a solution of a continuous variational inequality, and we prove its relation with the Approximate Gradient Projection condition (AGP) of Gárciga-Otero and Svaiter. We also prove that a slight variation of the AKKT condition is sufficient for a convex problem, either for variational inequalities or optimization. Sequential necessary conditions are more suitable to iterative methods than usual punctual conditions relying on constraint qualifications. The AKKT property holds at a solution independently of the fulfillment of a constraint qualification, but when a weak one holds, we can guarantee the validity of the KKT conditions.  相似文献   
4.
We develop a new notion of second-order complementarity with respect to the tangent subspace related to second-order necessary optimality conditions by the introduction of so-called tangent multipliers. We prove that around a local minimizer, a second-order stationarity residual can be driven to zero while controlling the growth of Lagrange multipliers and tangent multipliers, which gives a new second-order optimality condition without constraint qualifications stronger than previous ones associated with global convergence of algorithms. We prove that second-order variants of augmented Lagrangian (under an additional smoothness assumption based on the Lojasiewicz inequality) and interior point methods generate sequences satisfying our optimality condition. We present also a companion minimal constraint qualification, weaker than the ones known for second-order methods, that ensures usual global convergence results to a classical second-order stationary point. Finally, our optimality condition naturally suggests a definition of second-order stationarity suitable for the computation of iteration complexity bounds and for the definition of stopping criteria.  相似文献   
5.
In second-order algorithms, we investigate the relevance of the constant rank of the full set of active constraints in ensuring global convergence to a second-order stationary point under a constraint qualification. We show that second-order stationarity is not expected in the non-constant rank case if the growth of so-called tangent AKKT2 sequences is not controlled. Since no algorithm controls their growth, we argue that there is a theoretical limitation of algorithms in finding second-order stationary points without constant rank assumptions.  相似文献   
6.
Mathematical Programming - Sequential optimality conditions have played a major role in unifying and extending global convergence results for several classes of algorithms for general nonlinear...  相似文献   
7.
8.
In this paper, we deal with a conjecture formulated in Andreani et al. (Optimization 56:529–542, 2007), which states that whenever a local minimizer of a nonlinear optimization problem fulfills the Mangasarian–Fromovitz constraint qualification and the rank of the set of gradients of active constraints increases at most by one in a neighborhood of the minimizer, a second-order optimality condition that depends on one single Lagrange multiplier is satisfied. This conjecture generalizes previous results under a constant rank assumption or under a rank deficiency of at most one. We prove the conjecture under the additional assumption that the Jacobian matrix has a smooth singular value decomposition. Our proof also extends to the case of the strong second-order condition, defined in terms of the critical cone instead of the critical subspace.  相似文献   
9.
We prove an extension of Yuan’s lemma to more than two matrices, as long as the set of matrices has rank at most 2. This is used to generalize the main result of Baccari and Trad (SIAM J Optim 15(2):394–408, 2005), where the classical necessary second-order optimality condition is proved, under the assumption that the set of Lagrange multipliers is a bounded line segment. We prove the result under the more general assumption that the Hessian of the Lagrangian, evaluated at the vertices of the Lagrange multiplier set, is a matrix set with at most rank 2. We apply the results to prove the classical second-order optimality condition to problems with quadratic constraints and without constant rank of the Jacobian matrix.  相似文献   
10.

In Andreani et al. (Weak notions of nondegeneracy in nonlinear semidefinite programming, 2020), the classical notion of nondegeneracy (or transversality) and Robinson’s constraint qualification have been revisited in the context of nonlinear semidefinite programming exploiting the structure of the problem, namely its eigendecomposition. This allows formulating the conditions equivalently in terms of (positive) linear independence of significantly smaller sets of vectors. In this paper, we extend these ideas to the context of nonlinear second-order cone programming. For instance, for an m-dimensional second-order cone, instead of stating nondegeneracy at the vertex as the linear independence of m derivative vectors, we do it in terms of several statements of linear independence of 2 derivative vectors. This allows embedding the structure of the second-order cone into the formulation of nondegeneracy and, by extension, Robinson’s constraint qualification as well. This point of view is shown to be crucial in defining significantly weaker constraint qualifications such as the constant rank constraint qualification and the constant positive linear dependence condition. Also, these conditions are shown to be sufficient for guaranteeing global convergence of several algorithms, while still implying metric subregularity and without requiring boundedness of the set of Lagrange multipliers.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号