首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
化学   4篇
数学   43篇
物理学   2篇
  2009年   1篇
  2008年   2篇
  2001年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   3篇
  1882年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
1.
2.
Summary We discuss first the block structure of the Newton-Padé table (or, rational interpolation table) corresponding to the double sequence of rational interpolants for the data{(z k, h(zk)} k =0. (The (m, n)-entry of this table is the rational function of type (m,n) solving the linearized rational interpolation problem on the firstm+n+1 data.) We then construct continued fractions that are associated with either a diagonal or two adjacent diagonals of this Newton-Padé table in such a way that the convergents of the continued fractions are equal to the distinct entries on this diagonal or this pair of diagonals, respectively. The resulting continued fractions are generalizations of Thiele fractions and of Magnus'sP-fractions. A discussion of an some new results on related algorithms of Werner and Graves-Morris and Hopkins are also given.Dedicated to the memory of Helmut Werner (1931–1985)  相似文献   
3.
4.
5.
Summary The problem of generating the recurrence coefficients of orthogonal polynomials from the moments or from modified moments of the weight function is well understood for positive weight distributions. Here we extend this theory and the basic algorithms to the case of an indefinite weight function. While the generic indefinite case is formally not much different from the positive definite case, there exist nongeneric degenerate situations, and these require a different more complicated treatment. The understanding of these degenerate situations makes it possible to construct a stable approximate solution of an ill-conditioned problem.The application to adaptive iterative methods for linear systems of equations is anticipated.Dedicated to R.S. Varga on the occasion of his sixtieth birthdayG.H. Golub (USA, Canada), M.H. Gutknecht (other countries)  相似文献   
6.
7.
8.
The aim of the paper is to compile and compare basic theoretical facts on Krylov subspaces and block Krylov subspaces. Many Krylov (sub)space methods for solving a linear system Ax=b have the property that in exact computer arithmetic the true solution is found after ν iterations, where ν is the dimension of the largest Krylov subspace generated by A from r0, the residual of the initial approximation x0. This dimension is called the grade of r0 with respect to A. Though the structure of block Krylov subspaces is more complicated than that of ordinary Krylov subspaces, we introduce here a block grade for which an analogous statement holds when block Krylov space methods are applied to linear systems with multiple, say s, right-hand sides. In this case, the s initial residuals are bundled into a matrix R0 with s columns. The possibility of linear dependence among columns of the block Krylov matrix , which in practical algorithms calls for the deletion (or, deflation) of some columns, requires extra care. Relations between grade and block grade are also established, as well as relations to the corresponding notions of a minimal polynomial and its companion matrix.  相似文献   
9.
We capitalize upon the known relationship between pairs of orthogonal and minimal residual methods (or, biorthogonal and quasi-minimal residual methods) in order to estimate how much smaller the residuals or quasi-residuals of the minimizing methods can be compared to those of the corresponding Galerkin or Petrov–Galerkin method. Examples of such pairs are the conjugate gradient (CG) and the conjugate residual (CR) methods, the full orthogonalization method (FOM) and the generalized minimal residual (GMRES) method, the CGNE and BiCG versions of applying CG to the normal equations, as well as the biconjugate gradient (BiCG) and the quasi-minimal residual (QMR) methods. Also the pairs consisting of the (bi)conjugate gradient squared (CGS) and the transpose-free QMR (TFQMR) methods can be added to this list if the residuals at half-steps are included, and further examples can be created easily.The analysis is more generally applicable to the minimal residual (MR) and quasi-minimal residual (QMR) smoothing processes, which are known to provide the transition from the results of the first method of such a pair to those of the second one. By an interpretation of these smoothing processes in coordinate space we deepen the understanding of some of the underlying relationships and introduce a unifying framework for minimal residual and quasi-minimal residual smoothing. This framework includes the general notion of QMR-type methods.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号