首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   4篇
化学   32篇
数学   3篇
物理学   3篇
  2020年   2篇
  2019年   1篇
  2015年   1篇
  2014年   6篇
  2013年   2篇
  2012年   1篇
  2011年   7篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  1998年   2篇
  1994年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
The topomerization (bond rotation andS-pyramidal inversion) of a simple sulphilimine model, H2SNH has been studied with the aid ofab initio SCF MO calculations. The highest rotation barrier occurs when the H2SN moiety is planar, < HSN = 120 °. The maxima of the inversion crossections occur at the planar conformation for all rotation angles α as expected, however, the minima belong to different values when α is varied. The minimum energy path between the two lowest minima of the conformational energy surface consists of a pure inversion section and a section which is mostly rotation. The optimum values of the < HSN bond angles are significantly smaller than the corresponding < RSN bond angles of sulphilimines of bulkierR substituents.  相似文献   
2.
Ab initio MRD-CI calculations have been carried out on the ground and the eight lowest excited electronic states of LiAr, correlating with excited Li atom states up to 3d 2D. The ground (X2+ (2s)) and 2 2Σ+ (2p) electronic states are repulsive while the higher excited states show shallow Rydberg minima. Rates of radiative bound-bound and bound-free transitions have been also calculated.  相似文献   
3.
Vertical proton affinities were calculated with closed and open shell direct SCF-MO methods for the ground, excited triplet and ionized doublet states of CH2O and CH2OH+.The computed gas phase basicity of CH2O follows the order: CH2O(1 A 1) > CH2O*(3 A 1 or 3 A 2) > CH2O+(2 B 2 or 2 B 1).  相似文献   
4.
The minimum energy pathways for symmetrical dissociation of water into O(1Dg + H2(X1Σ+g) are calculated by the MRD Cl technique for various excited states of H2O and possible mechanism for the photodissociation are discussed.  相似文献   
5.
The aim of this article is to develop improved trial methods for the solution of a generalized exterior Bernoulli free boundary problem. At the free boundary, we prescribe the Neumann boundary condition and update the free boundary with the help of the remaining Dirichlet boundary condition. Appropriate update rules are obtained by expanding the state's Dirichlet data at the actual boundary via a Taylor expansion of first and second order. The resulting trial methods converge linearly for both cases, although the trial method based on the second order Taylor expansion is much more robust. Nevertheless, via results of shape sensitivity analysis, we are able to modify the update rules such that their convergence is improved. The feasibility of the proposed trial methods and their performance is demonstrated by numerical results.  相似文献   
6.
We study, via density functional theory and time dependent DFT calculations, the photophysical processes of a styryl-bodipy derivative, which acts as a three metal-cation-receptor fluorophore in order to (a) gain information on the appropriate computational approach for successful prediction of molecular logic gate candidates, (b) rationalize the available experimental data and (c) understand how the given combination of three different receptors with the BODIPY fluorophore presents such interesting optoelectronic responses. The fluorophore ( 1 ), its monometallic complexes ( 1-Ca 2+ , 1-Zn 2+ , and 1-Hg 2+ ), and its trimetallic complex ( 2 ) are studied. The calculated λmax values for absorption and emission are in excellent agreement with experimental data. It was found that the observed quenching of emission of 1 and of the monometallic complexes is attributed to the fact that their first excited state is a charge-transfer state whereas this does not happen for the complex 2 . It should be noted that for the correct ordering of the excited states, the inclusion of corrections to the excitation energies for nonequilibrium solvent effects is required; while in the case of 1-Ca 2+ , the additional explicit inclusion of the solvent is necessary for the quenching of the emission spectra.  相似文献   
7.
The electronic and geometric structures of gallium dinitride GaN 2, and gallium tetranitride molecules, GaN 4, were systematically studied by employing density functional theory and perturbation theory (MP2, MP4) in conjunction with the aug-cc-pVTZ basis set. In addition, for the ground-state of GaN 4( (2)B 1) a density functional theory study was carried out combining different functionals with different basis sets. A total of 7 minima have been identified for GaN 2, while 37 structures were identified for GaN 4 corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces and bonding mechanisms for some low-lying electronic states of GaN 4. The dissociation energy of the ground-state GaN 2 ( X (2)Pi) is 1.1 kcal/mol with respect to Ga( (2)P) + N 2( X (1)Sigma g (+)). The ground-state and the first two excited minima of GaN 4 are of (2)B 1( C 2 v ), (2)A 1( C 2 v , five member ring), and (4)Sigma g (-)( D infinityh ) symmetry, respectively. The dissociation energy ( D e) of the ground-state of GaN 4, X (2)B 1, with respect to Ga( (2)P) + 2 N 2( X (1)Sigma g (+)), is 2.4 kcal/mol, whereas the D e of (4)Sigma g (-) with respect to Ga( (4)P) + 2 N 2( X (1)Sigma g (+)) is 17.6 kcal/mol.  相似文献   
8.
Configuration interaction calculations have been carried out on electronic states of the NaLi molecule and the cation NaLi(+). Potential energy curves are presented for the lowest nine (1)Sigma(+), seven (1)Pi, four (1)Delta, eight (3)Sigma(+), seven (3)Pi, and four (3)Delta states of NaLi as well as for the lowest ten (2)Sigma(+), six (2)Pi, and two (2)Delta states of NaLi(+). The results of the present many-electron configuration interaction calculations on the cation are in support of previous core-polarization effective potential calculations. The present calculations on the NaLi molecule are complementary to previous theoretical work on this system, including recently observed electronic states that had not been calculated previously as well as an investigation of nonadiabatic effects leading to spectral perturbations. Furthermore, ab initio potential energy curves of the neutral and the ground state of the cation are employed to determine quantum defect that may be employed to generate potential energy curves for nd and (n+1)p (for n>3) Rydberg states of NaLi. The present results on the 3 (1)Pi and 4 (1)Pi states are in good agreement with recent experimental work, whereas on the basis of theoretical data, the recently observed state 5 (1)Pi is better described as 6 (1)Pi.  相似文献   
9.
The electronic and geometric structures of gallium dinitride cation, GaN2+ and gallium tetranitride cation, GaN4+ were systematically studied by employing density functional theory (DFT-B3LYP) and perturbation theory (MP2, MP4) in conjunction with large basis sets, (aug-)cc-pVxZ, x = T, Q. A total of 7 structures for GaN2+ and 24 for GaN4+ were identified, corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces, and bonding mechanisms for some low-lying electronic states. The calculated dissociation energy (De) of the ground state of GaN2+, X1Sigma+, is 5.6 kcal/mol with respect to Ga+(1S) + N2(X1Sigmag+) and that of the excited state, ?3Pi, is 24.8 kcal/mol with respect to Ga+(3P) + N2(X1Sigmag+). The ground state and the first excited minimum of GaN4+ are of 1A1(C2v) and 3B1(C2v) symmetry with corresponding De of 11.0 and 43.7 kcal/mol with respect to Ga+(1S) + 2N2(X1Sigmag+) for X1A1 and Ga+(3P) + 2N2(X1Sigmag+) for 3B1.  相似文献   
10.
In this paper fluid models for heterogeneous multiplexed traffic are considered. First, some extensions to the general theory applicable to superposed, time-reversible Markovian Rate Processes are given. These refer to the connection between performance metrics, the consideration for singular systems and the continuity of the solution, with respect to the system parameters. The general framework is then carried over to the heterogeneous multiplexing of ON/OFF sources. By combining the general theory with the special structure of the ON/OFF sources several important facets of this structure are highlighted. As a result, more powerful methods that improve computation speed, stability and ease of implementation are produced. More specifically, the numerical part of the method is reduced to a solution of a nonlinear equation per system eigenvalue. The solution is obtainable through a variant of the (locally quadratically convergent) Newton method. For this method, easily computable starting values that guarantee convergence are given. In addition, explicit expressions for the eigenvectors are provided with the potentially unstable quantities factored-out. The paper also provides explicit and stably computable formulae for upper bounds to the coefficients of the spectral components, present in the expressions for the performance measures of interest. Moreover, the paper proves a partial ordering property for the system eigenvalues and presents an algorithm that performs full ordering on-line. This, in many cases, results in a great reduction to the amount of computation, without any significant loss of precision. Lastly, the particular case of heterogeneity where the differences are only identified in the rates within bursts is seen to have features resembling homogeneous systems. The possibility to substitute an equivalent homogeneous system of reduced order, for the original heterogeneous one is addressed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号