首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   8篇
化学   45篇
数学   5篇
物理学   10篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2016年   5篇
  2015年   4篇
  2013年   3篇
  2012年   1篇
  2011年   6篇
  2010年   3篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1939年   2篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
The ability to control the interplay of materials with low‐energy photons is important as visible light offers several appealing features compared to ultraviolet radiation (less damaging, more selective, predominant in the solar spectrum, possibility to increase the penetration depth). Two different metal–organic frameworks (MOFs) were synthesized from the same linker bearing all‐visible ortho‐fluoroazobenzene photoswitches as pendant groups. The MOFs exhibit different architectures that strongly influence the ability of the azobenzenes to isomerize inside the voids. The framework built with Al‐based nodes has congested 1D channels that preclude efficient isomerization. As a result, local light–heat conversion can be used to alter the CO2 adsorption capacity of the material on exposure to green light. The second framework, built with Zr nodes, provides enough room for the photoswitches to isomerize, which leads to a unique bistable photochromic MOF that readily responds to blue and green light. The superiority of green over UV irradiation was additionally demonstrated by reflectance spectroscopy and analysis of digested samples. This material offers promising perspectives for liquid‐phase applications such as light‐controlled catalysis and adsorptive separation.  相似文献   
2.
Ethane is selectively adsorbed over ethylene in their mixtures on the zeolite imidazolate framework ZIF-7. In packed columns, this results in the direct production of pure ethylene. This gas-phase separation is attributed to a gate-opening effect in which specific threshold pressures control the uptake and release of individual molecules. These threshold pressures differ for the different molecules, leaving a window of selective uptake operation. This phenomenon makes ZIF-7 a perfect candidate for the separation of olefins from paraffins, since in contrast to most microporous materials, the paraffin is selectively adsorbed. Mixture adsorption, as studied by breakthrough experiments, demonstrates that gate-opening effects can be effectively used to separate molecules of very similar size.  相似文献   
3.
4.
Bonding in six‐coordinate complexes based on Group 13 elements (B, Al, Ga, In, Tl) is usually considered to be identical to that in transition‐metal analogues. We herein demonstrate through sophisticated electronic‐structure analyses that the bonding in these Group 13 element complexes is fundamentally different and better characterized as electron‐rich hypervalent bonding with essentially no role for the d orbitals. This characteristic is carried through to the molecular properties of the complex.  相似文献   
5.
C2 and C3 alkanes are selectively adsorbed from mixtures over the corresponding alkenes on the zeolite imidazolate framework ZIF-7 through a gate-opening mechanism. As a result, the direct production of the pure alkene upon adsorption and the pure alkane upon desorption in packed columns is possible. Herein, a detailed investigation of the step-wise adsorption and separation of alkanes and alkenes is presented, together with a rigorous performance assessment. A molecular picture of the gate-opening mechanism underlying the unprecedented selectivity towards alkane adsorption is proposed based on DFT calculations and a thermodynamic analysis of the adsorption-desorption isotherms.  相似文献   
6.
7.
A single crystal to single crystal transmetallation process takes place in the three‐dimensional (3D) metal–organic framework (MOF) of formula MgII2{MgII4[CuII2(Me3mpba)2]3}?45 H2O ( 1 ; Me3mpba4?=N,N′‐2,4,6‐trimethyl‐1,3‐phenylenebis(oxamate)). After complete replacement of the MgII ions within the coordination network and those hosted in the channels by either CoII or NiII ions, 1 is transmetallated to yield two novel MOFs of formulae Co2II{CoII4[CuII2(Me3mpba)2]3}?56 H2O ( 2 ) and Ni2II{NiII4[CuII2(Me3mpba)2]3}? 54 H2O ( 3 ). This unique postsynthetic metal substitution affords materials with higher structural stability leading to enhanced gas sorption and magnetic properties.  相似文献   
8.
The ZEPLIN Collaboration has recently published its first result presenting a maximum sensitivity of 1.1×10−61.1×10−6 picobarn for a WIMP mass of ≈60 GeV60 GeV. The analysis is based on a discrimination method using the different time distribution of scintillation light generated in electron recoil and nuclear recoil interactions. We show that the methodology followed both for the calibration of the ZEPLIN-I detector response and for the estimation of the discrimination power is not reliable enough to claim any background discrimination at the present stage. The ZEPLIN-I sensitivity appears then to be in the order of 10−3 picobarn, three orders of magnitude above the claimed 1.1×10−61.1×10−6 picobarn.  相似文献   
9.
The electrochemical reduction of CO2 holds great promise for lowering the concentration of CO2 in the Earth′s atmosphere. However, several challenges have hindered the commercialization of this technology, including energy efficiency, the solubility of CO2 in the aqueous phase, and electrode stability. In this Minireview, we highlight and summarize the main advantages and limitations that metal–organic frameworks (MOFs) may offer in this field of research, either when used directly as electrocatalysts or when used as catalyst precursors.  相似文献   
10.
The strange baryon production rates measured at LEP are compared to several models: isospin, LPHD, QCM, Jetset, Herwig and MOPS. In particular, the parameters of the new MOPS model are adjusted in an attempt to reproduce the spin and strangeness dependence of the observed rates. Received: 8 April 1998 / Revised version: 27 August 1998 / Published online: 19 November 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号