首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  国内免费   1篇
化学   4篇
力学   1篇
数学   39篇
物理学   2篇
  2022年   1篇
  2019年   1篇
  2016年   3篇
  2015年   2篇
  2013年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   3篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
Chaouqui  F.  Gander  M. J.  Kumbhar  P. M.  Vanzan  T. 《Numerical Algorithms》2022,91(1):81-107

Iterative substructuring Domain Decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. It is less known that classical overlapping DD methods can also be formulated in substructured form, i.e., as iterative methods acting on variables defined exclusively on the interfaces of the overlapping domain decomposition. We call such formulations substructured domain decomposition methods. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS. We show that RAS and SRAS are equivalent when used as iterative solvers, as they produce the same iterates, while they are substantially different when used as preconditioners for GMRES. We link the volume and substructured Krylov spaces and show that the iterates are different by deriving the least squares problems solved at each GMRES iteration. When used as iterative solvers, SRAS presents computational advantages over RAS, as it avoids computations with matrices and vectors at the volume level. When used as preconditioners, SRAS has the further advantage of allowing GMRES to store smaller vectors and perform orthogonalization in a lower dimensional space. We then consider nonlinear problems, and we introduce SRASPEN (Substructured Restricted Additive Schwarz Preconditioned Exact Newton), where SRAS is used as a preconditioner for Newton’s method. In contrast to the linear case, we prove that Newton’s method applied to the preconditioned volume and substructured formulation produces the same iterates in the nonlinear case. Next, we introduce two-level versions of nonlinear SRAS and SRASPEN. Finally, we validate our theoretical results with numerical experiments.

  相似文献   
2.
Recently a variant of the additive Schwarz (AS) preconditioner, the restricted additive Schwarz (RAS) preconditioner has been introduced, and numerical experiments showed that RAS converges faster and requires less communication than AS. We show in this paper how RAS, which is defined at the matrix level, can be interpreted as an iteration at the continuous level of the underlying problem. This interpretation reveals why RAS converges faster than classical AS.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   
3.
4.
5.
6.
7.
Absorbing boundary conditions have been developed for various types of problems to truncate infinite domains in order to perform computations. But absorbing boundary conditions have a second, recent and important application: parallel computing. We show that absorbing boundary conditions are essential for a good performance of the Schwarz waveform relaxation algorithm applied to the wave equation. In turn this application gives the idea of introducing a layer close to the truncation boundary which leads to a new way of optimizing absorbing boundary conditions for truncating domains. We optimize the conditions in the case of straight boundaries and illustrate our analysis with numerical experiments both for truncating domains and the Schwarz waveform relaxation algorithm.

  相似文献   

8.
Schwarz waveform relaxation algorithms (SWR) are naturally parallel solvers for evolution partial differential equations. They are based on a decomposition of the spatial domain into subdomains, and a partition of the time interval of interest into time windows. On each time window, an iteration, during which subproblems are solved in space-time subdomains, is then used to obtain better and better approximations of the overall solution. The information exchange between subdomains in space-time is performed through classical or optimized transmission conditions (TCs). We analyze in this paper the optimization problem when the time windows are short. We use as our model problem the optimized SWR algorithm with Robin TCs applied to the heat equation. After a general convergence analysis using energy estimates, we prove that in one spatial dimension, the optimized Robin parameter scales like the inverse of the length of the time window, which is fundamentally different from the known scaling on general bounded time windows, which is like the inverse of the square root of the time window length. We illustrate our analysis with a numerical experiment.  相似文献   
9.
An useful application of computer algebra systems is the generation of algorithms for numerical computations. We have shown in Gander and Gruntz (SIAM Rev., 1999) how computer algebra can be used in teaching to derive numerical methods. In this paper we extend this work, using essentially the capability of computer algebra system to construct and manipulate the interpolating polynomial and to compute a series expansion of a function. We will automatically generate formulas for integration and differentiation with error terms and also generate multistep methods for integrating differential equations. In memory of Germund Dahlquist (1925–2005).AMS subject classification (2000) 65D25, 65D30, 65D32, 65L06  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号