首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   4篇
数学   1篇
  2020年   1篇
  2011年   1篇
  2007年   1篇
  1994年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
2.
Voigt  Matthew  Fredriksen  Helge  Rasmussen  Chris 《ZDM》2020,52(5):1051-1062
ZDM – Mathematics Education - While the number of studies of flipped classrooms has increased, they have primarily addressed the efficacy of using such an approach on student outcomes, often...  相似文献   
3.
4.
5.
The reaction kinetics of the copolymerization of carbon dioxide and cyclohexene oxide to produce poly(cyclohexene carbonate), catalyzed by a dizinc acetate complex, is studied by in situ attenuated total reflectance infrared (ATR-IR) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy. A parameter study, including reactant and catalyst concentration and carbon dioxide pressure, reveals zero reaction order in carbon dioxide concentration, for pressures between 1 and 40 bar and temperatures up to 80 °C, and a first-order dependence on catalyst concentration and concentration of cyclohexene oxide. The activation energies for the formation of poly(cyclohexene carbonate) and the cyclic side product cyclohexene carbonate are calculated, by determining the rate coefficients over a temperature range between 65 and 90 °C and using Arrhenius plots, to be 96.8 ± 1.6 kJ mol(-1) (23.1 kcal mol(-1)) and 137.5 ± 6.4 kJ mol(-1) (32.9 kcal mol(-1)), respectively. Gel permeation chromatography (GPC), (1)H NMR spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry are employed to study the poly(cyclohexene carbonate) produced, and reveal bimodal molecular weight distributions, with narrow polydispersity indices (≤1.2). In all cases, two molecular weight distributions are observed, the higher value being approximately double the molecular weight of the lower value; this finding is seemingly independent of copolymerization conversion or reaction parameters. The copolymer characterization data and additional experiments in which chain transfer agents are added to copolymerization experiments indicate that rapid chain transfer reactions occur and allow an explanation for the observed bimodal molecular weight distributions. The spectroscopic and kinetic analyses enable a mechanism to be proposed for both the copolymerization reaction and possible side reactions; a dinuclear copolymerization active site is implicated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号