首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
数学   8篇
  2021年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2009年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Acta Mathematica Hungarica - This paper is devoted to the studying of the weak Orlicz–Lorentz space $$\Lambda_X^{\varphi, \infty}(w)$$ , which can be regarded as an extension of weak Orlicz...  相似文献   
2.
Let S be a k-colored (finite) set of n points in $\mathbb{R}^{d}$ , d≥3, in general position, that is, no (d+1) points of S lie in a common (d?1)-dimensional hyperplane. We count the number of empty monochromatic d-simplices determined by S, that is, simplices which have only points from one color class of S as vertices and no points of S in their interior. For 3≤kd we provide a lower bound of $\varOmega(n^{d-k+1+2^{-d}})$ and strengthen this to Ω(n d?2/3) for k=2. On the way we provide various results on triangulations of point sets in  $\mathbb{R}^{d}$ . In particular, for any constant dimension d≥3, we prove that every set of n points (n sufficiently large), in general position in $\mathbb{R}^{d}$ , admits a triangulation with at least dn+Ω(logn) simplices.  相似文献   
3.
4.
5.
Consider a set of mobile clients represented by n points in the plane moving at constant speed along n different straight lines. We study the problem of covering all mobile clients using a set of k disks centered at k fixed centers. Each disk exists only at one instant and while it does, covers any client within its coverage radius. The task is to select an activation time and a radius for each disk such that every mobile client is covered by at least one disk. In particular, we study the optimization problem of minimizing the maximum coverage radius. First we prove that, although the static version of the problem is polynomial, the kinetic version is NP-hard. Moreover, we show that the problem is not approximable by a constant factor (unless P = NP). We then present a generic framework to solve it for fixed values of k, which in turn allows us to solve more general optimization problems. Our algorithms are efficient for constant values of k.  相似文献   
6.
Token Graphs     
For a graph G and integer k ≥ 1, we define the token graph F k (G) to be the graph with vertex set all k-subsets of V(G), where two vertices are adjacent in F k (G) whenever their symmetric difference is a pair of adjacent vertices in G. Thus vertices of F k (G) correspond to configurations of k indistinguishable tokens placed at distinct vertices of G, where two configurations are adjacent whenever one configuration can be reached from the other by moving one token along an edge from its current position to an unoccupied vertex. This paper introduces token graphs and studies some of their properties including: connectivity, diameter, cliques, chromatic number, Hamiltonian paths, and Cartesian products of token graphs.  相似文献   
7.
8.
Given an ordered set of points and an ordered set of geometric objects in the plane, we are interested in finding a non-crossing matching between point–object pairs. In this paper, we address the algorithmic problem of determining whether a non-crossing matching exists between a given point–object pair. We show that when the objects we match the points to are finite point sets, the problem is NP-complete in general, and polynomial when the objects are on a line or when their size is at most 2. When the objects are line segments, we show that the problem is NP-complete in general, and polynomial when the segments form a convex polygon or are all on a line. Finally, for objects that are straight lines, we show that the problem of finding a min-max non-crossing matching is NP-complete.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号