首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
数学   14篇
物理学   1篇
  2019年   2篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
In this paper a comparison is made between two decomposition techniques to solve a staff scheduling problem with column generation. In the first approach, decomposition takes place on the staff members, whereas in the second approach decomposition takes place on the activities that have to be performed by the staff members. The resulting master LP is respectively a set partitioning problem and a capacitated multi-commodity flow problem. Both approaches have been implemented in a branch-and-price algorithm. We show a trade-off between modeling power and computation times of both techniques.  相似文献   
2.
3.
In this paper we study the resource-constrained project scheduling problem with weighted earliness–tardinesss penalty costs. Project activities are assumed to have a known deterministic due date, a unit earliness as well as a unit tardiness penalty cost and constant renewable resource requirements. The objective is to schedule the activities in order to minimize the total weighted earliness–tardinesss penalty cost of the project subject to the finish–start precedence constraints and the constant renewable resource availability constraints. With these features the problem becomes highly attractive in just-in-time environments.We introduce a depth-first branch-and-bound algorithm which makes use of extra precedence relations to resolve resource conflicts and relies on a fast recursive search algorithm for the unconstrained weighted earliness–tardinesss problem to compute lower bounds. The procedure has been coded in Visual C++, version 4.0 under Windows NT. Both the recursive search algorithm and the branch-and-bound procedure have been validated on a randomly generated problem set.  相似文献   
4.
We describe two algorithms, based on dynamic programming logic, for optimally solving the discrete time/cost trade-off problem (DTCTP) in deterministic activity-on-arc networks of the CPM type, where the duration of each activity is a discrete, nonincreasing function of the amount of a single nonrenewable resource committed to it. The first algorithm is based on a procedure proposed by Bein, Kamburowski and Stallmann for finding the minimal number of reductions necessary to transform a general network to a series-parallel network. The second algorithm minimizes the estimated number of possibilities that need to be considered during the solution procedure. Both procedures have been programmed in C and tested on a large set of representative networks to give a good indication of their performance, and indicate the circumstances in which either algorithm performs best.  相似文献   
5.
The Critical Chain Scheduling and Buffer Management (CC/BM) methodology, proposed by Goldratt (Critical chain, 1997), introduced the concepts of feeding buffers, project buffers and resource buffers as well as the roadrunner mentality. This last concept, in which activities are started as soon as possible, was introduced in order to speed up projects by taking advantage of predecessors finishing early. Later on, the railway scheduling concept of never starting activities earlier than planned was introduced as a way to increase the stability of the project, typically at the cost of an increase in the expected project makespan. In this paper, we will indicate a realistic situation in which railway scheduling improves both the stability and the expected project makespan over roadrunner scheduling.  相似文献   
6.
This paper presents a review of the literature on multi-appointment scheduling problems in hospitals. In these problems, patients need to sequentially visit multiple resource types in a hospital setting so they can receive treatment or be diagnosed. Therefore, each patient is assigned a specific path over a subset of the considered resources and each step needs to be scheduled. The main aim of these problems is to let each patient visit the resources in his or her subset within the allotted time to receive timely care. This is important because a delayed diagnosis or treatment may result in adverse health effects. Additionally, with multi-appointment scheduling, hospitals have the opportunity to augment patient satisfaction, allowing the patient to visit the hospital less frequently. To structure the growing body of literature in this field and aid researchers in the field, a classification scheme is proposed and used to classify the scientific work on multi-appointment scheduling in hospitals published before the end of 2017. The results show that multi-appointment scheduling problems are becoming increasingly popular. In fact, multi-appointment scheduling problems in hospitals are currently gaining progressively more momentum in the academic literature.  相似文献   
7.
A common problem at hospitals is the extreme variation in daily (even hourly) workload pressure for nurses. The operating room is considered to be the main engine and hence the main generator of variance in the hospital. The purpose of this paper is threefold. First of all, we present a concrete model that integrates both the nurse and the operating room scheduling process. Second, we show how the column generation technique approach, one of the most employed exact methods for solving nurse scheduling problems, can easily cope with this model extension. Third, by means of a large number of computational experiments we provide an idea of the cost saving opportunities and required solution times.  相似文献   
8.
We describe a new exact procedure for the discrete time/cost trade-off problem in deterministic activity-on-the-arc networks of the CPM type, where the duration of each activity is a discrete, nonincreasing function of the amount of a single resource (money) committed to it. The objective is to construct the complete and efficient time/cost profile over the set of feasible project durations. The procedure uses a horizon-varying approach based on the iterative optimal solution of the problem of minimising the sum of the resource use over all activities subject to the activity precedence constraints and a project deadline. This optimal solution is derived using a branch-and-bound procedure which computes lower bounds by making convex piecewise linear underestimations of the discrete time/cost trade-off curves of the activities to be used as input for an adapted version of the Fulkerson labelling algorithm for the linear time/cost trade-off problem. Branching involves the selection of an activity in order to partition its set of execution modes into two subsets which are used to derive improved convex piecewise linear underestimations. The procedure has been programmed in Visual C ++ under Windows NT and has been validated using a factorial experiment on a large set of randomly generated problem instances.  相似文献   
9.
The resource-constrained project scheduling problem (RCPSP) has been the subject of a great deal of research during the previous decades. This is not surprising given the high practical relevance of this scheduling problem. Nevertheless, extensions are needed to be able to cope with situations arising in practice such as multiple activity execution modes, activity duration changes and resource breakdowns. In this paper we analytically determine the impact of unexpected resource breakdowns on activity durations. Furthermore, using this information we develop an approach for inserting explicit idle time into the project schedule in order to protect it as well as possible from disruptions caused by resource unavailabilities. This strategy will be compared to a traditional simulation-based procedure and to a heuristic developed for the case of stochastic activity durations.  相似文献   
10.
Annals of Operations Research - The proactive and reactive resource-constrained project scheduling problem (PR-RCPSP), that has been introduced recently (Davari and Demeulemeester, 2017), deals...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号