首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   16篇
化学   145篇
数学   9篇
物理学   22篇
  2024年   2篇
  2023年   7篇
  2022年   5篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   12篇
  2013年   9篇
  2012年   19篇
  2011年   10篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   12篇
  2005年   11篇
  2004年   6篇
  2003年   7篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
1.
The preferred tissue for analyses of fish stable isotope ratios for most researchers is muscle, the sampling of which typically requires the specimen to be sacrificed. The use of non-destructive methods in fish isotopic research has been increasing recently, but as yet is not a standard procedure. Previous studies have reported varying levels of success regarding the utility of non-lethally obtained stable isotope materials, e.g. fins, but none have accounted for the potential compounding effects of inorganic components of fin rays or lipids. Comparisons of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios of muscle with adipose and caudal fin of two salmonids, Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.), revealed that caudal fin can be used as a non-destructive surrogate for muscle in stable isotope analysis, but that adipose fin, where available, is a better proxy. The use of a published model to inexpensively counteract the confounding effect of lipids, which are depleted in 13C, greatly improved the relationship between fish muscle and fins. However, efforts to account for the inorganic components of fin rays were counterproductive and required twice the biomass of fins clipped from each fish. As this experiment was conducted on wild fish, controlled laboratory studies are required to confirm these field observations.  相似文献   
2.
Ganikhanov F  Evans CL  Saar BG  Xie XS 《Optics letters》2006,31(12):1872-1874
We demonstrate a new approach to coherent anti-Stokes Raman scattering (CARS) microscopy that significantly increases the detection sensitivity. CARS signals are generated by collinearly overlapped, tightly focused, and raster scanned pump and Stokes laser beams, whose difference frequency is rapidly modulated. The resulting amplitude modulation of the CARS signal is detected through a lock-in amplifier. This scheme efficiently suppresses the nonresonant background and allows for the detection of far fewer vibrational oscillators than possible through existing CARS microscopy methods.  相似文献   
3.
The photoluminescence (PL) of the red laser dye DCM2, doped into blended thin films of polystyrene (PS) and the polar small molecule camphoric anhydride (CA), redshifts as the CA concentration increases. The DCM2 PL peaks at 2.20 eV (lambda=563 nm) for pure PS films and shifts to 2.05 eV (lambda=605 nm) for films with 24.5% CA (by mass). The capacitively measured electronic permittivity also increases from epsilon=2.4 to epsilon=5.6 with CA concentration. These results are consistent with the theory of solvatochromism developed for organic molecules in liquid solvents. To our knowledge, this work is the first application of a quantitative theory of solvation to organic molecules in amorphous thin films with continuously controllable permittivity, and demonstrates that "solid state solvation" can be used to predictably tune exciton energies in organic thin film structures.  相似文献   
4.
Ferrocenoyl peptides incorporating thioether functionality respond more strongly to mercury(II) than to other heavy metal ions in solution. Compounds reported previously in this context are all 1,1′-disubstituted, and all include two or more sulfur-containing amino acids. To test whether two thioether groups are required for effective mercury binding by these systems, we have prepared a series of singly-substituted ferrocenoyl peptides from ferrocenecarboxylic acid and l-methionine, S-methyl-l-cysteine or S-trityl-l-cysteine, and tested them as electrochemical probes for mercury(II). Nine ferrocenoyl peptides have been synthesised using a Boc-protecting group strategy and HBTU-mediated peptide coupling. The electrochemical properties of these compounds have been determined using cyclic voltammetry, and all show fully reversible one electron oxidation steps. Forward sweep half wave peaks (EF), reverse sweep half wave peaks (ER), peak separations (ΔEP) and half wave potentials (E1/2) are reported. Changes in the potential of the iron(II)/iron(III) redox couple of the ferrocene core have been used to quantify heavy metal-peptide interactions, revealing that these monotopic systems also respond more strongly to mercury(II) than to zinc(II), cadmium(II), silver(I) and lead(II). NMR experiments to characterise the peptide-mercury interaction implicate the thioether sulfur as the site of mercury binding and indicate 1:1 stoichiometry. The crystal structure of ferrocenoyl-S-methyl-l-cysteine methyl ester is also reported. The greater responsiveness of these systems to mercury(II) makes them interesting leads for the development of biologically inspired sensors for this toxic heavy metal.  相似文献   
5.
Herein we report the discovery that two bottleable, neutral, base‐stabilized diborane(5) compounds are able to bind strongly to a number of copper(I) complexes exclusively through their B?B bond. The resulting complexes represent the first known complexes containing unsupported, neutral σB?B diborane ligands. Single‐crystal X‐ray analyses of these complexes show that the X?Cu moiety (X=Cl, OTf, C6F5) lies opposite the bridging hydrogen atom of the diborane and is near perpendicular to the B?B bond, interacting almost equally with both boron atoms and causing a B?B bond elongation. DFT studies show that σ donation from and π backdonation to the pseudo‐π‐like B?B bond account for their formation. Astoundingly, these copper σB?B complexes are inert to ligand exchange with pyridine under either heating or photoirradiation.  相似文献   
6.
Journal of Computer-Aided Molecular Design - The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and...  相似文献   
7.
8.
Covalent side‐chain cross‐links are a versatile method to control peptide folding, particularly when α‐helical secondary structure is the target. Here, we examine the application of oxime bridges, formed by the chemoselective reaction between aminooxy and aldehyde side chains, for the stabilization of a helical peptide involved in a protein–protein complex. A series of sequence variants of the dimeric coiled coil GCN4‐p1 bearing oxime bridges at solvent‐exposed positions were prepared and biophysically characterized. Triggered unmasking of a side‐chain aldehyde in situ and subsequent cyclization proceed rapidly and cleanly at pH 7 in the folded protein complex. Comparison of folding thermodynamics among a series of different oxime bridges show that the cross links are consistently stabilizing to the coiled coil, with the extent of stabilization sensitive to the exact size and structure of the macrocycle. X‐ray crystallographic analysis of a coiled coil with the best cross link in place and a second structure of its linear precursor show how the bridge is accommodated into an α‐helix. Preparation of a bicyclic oligomer by simultaneous formation of two linkages in situ demonstrates the potential use of triggered oxime formation to both trap and stabilize a particular peptide folded conformation in the bound state.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号