首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   2篇
化学   35篇
力学   4篇
数学   3篇
物理学   6篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2012年   5篇
  2011年   2篇
  2008年   5篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2000年   1篇
  1996年   1篇
  1992年   1篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有48条查询结果,搜索用时 0 毫秒
1.
This paper deals with a computational analysis of the influence of the pressing method and part geometry on the final density distribution in the cold compaction process of ceramic alumina powders. The analysis is based on the explicit finite-element model proposed and validated in a previous study. The mechanical behavior of the processing material is described using a multisurface elastoplastic model, the modified Drucker-Prager/Cap model Published in Prikladnaya Mekhanika, Vol. 43, No. 10, pp. 129–134, October 2007.  相似文献   
2.
3.
4.
Coordinated N,N',N"-trimethyldiethylenetriamine (Me3dien) has several possible configurations: two have mirror symmetry (R,S configurations at the terminal nitrogens) and the terminal N-Me's anti or syn with respect to the central N-Me (anti-(R,S) and syn-(R,S) isomers, respectively), and two are nonsymmetrical (R,R and S,S configurations at terminal nitrogens, rac denotes a 1:1 mixture of the two isomers). For each configuration, two Me3dienPtG atropisomers can be formed (anti or syn orientation of central N-Me and G 06, G = guanine derivative), and these can be observed since the terminal N-Me's decrease the rate of G rotation about the Pt-N7 bond. In symmetrical syn-(R,S)-Me3dienPtG derivatives with G = 9-EtG and 3'-GMP, the anti rotamer, which can form O6-NH H-bonds, was slightly favored over the syn rotamer but never more than 2:1. This anti rotamer is also favored by lower steric repulsion between the terminal N-Me's and G O6; thus, the contribution of O6-NH H-bonding to the stability of the anti rotamer could be rather small. With G = 5'-GMP, an O6-NH H-bond in the anti rotamer and a phosphate-NH H-bond in the syn rotamer can form. Only the syn rotamer was detected in solution, indicating that NH H-bonds to 5'-phosphate are far more important than to O6, particularly since steric factors favor the anti rotamer. Interconversion between rotamers was faster for syn-(R,S)- than for rac-Me3dien derivatives. This appears to be determined by a smaller steric impediment to G rotation of two "quasi equatorial" N-Me's, both on one side of the platinum coordination plane (syn-(R,S) isomer), than one "quasi equatorial" and one "quasi axial" N-Me on either side of the coordination plane (rac isomer).  相似文献   
5.
We consider a two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. In both the focusing and defocusing case we prove local well-posedness, i.e., existence and uniqueness of the solution for short times, as well as energy and mass conservation. In addition, we prove that this implies global existence in the defocusing case, irrespective of the power of the nonlinearity, while in the focusing case blowing-up solutions may arise.  相似文献   
6.
7.
8.
Complexes of the type syn-(R,S)-Me(3)dienPtL (Me(3)dien = N,N',N' '-trimethyldiethylenetriamine; L = guanine or hypoxanthine derivative) have two rotamers, a feature useful for assessing hydrogen-bond interactions between a Me(3)dien NH group and either the O6 or the phosphate group of the coordinated L. The two rotamers are defined as endo and exo for the rotamer with the six-membered ring of the purine on the same side and on the opposite side, respectively, of the coordination plane as the N-Me's. For L = 5'-GMP and 5'-IMP the endo rotamer is the exclusive form (at neutral and basic pH) or is present at 90% and more (low pH where 5'-phosphate group is protonated). A 5'-phosphate group can be positioned to form a direct H-bond with a Me(3)dien NH group only in the endo form; such an H-bond explains this high endo preference. Such a direct phosphate-NH H-bond is not possible for other complexes used in this study because either L has no phosphate group (9-EtG, Guo) or the phosphate is at the 3'-position (3'-GMP and 3'-IMP), too far for H-bonding. Nevertheless, a preference for the endo rotamer was observed for these L also. This result is opposite to that expected both from potential steric repulsion of the L O6 with the N-Me groups and also from the lack of a potential favorable H-bond interaction between L O6 and a Me(3)dien NH. For the 9-EtG adduct, the temperature dependence of the endo/exo equilibrium and the activation parameters for endo/exo interconversion suggest that the preference for the endo rotamer arises from the hydration of the Me(3)dien NH groups; such hydration is favorable in the endo rotamer. At basic pH, N1H deprotonation increases the H-bond capacity of O6, and the exo rotamer increases in stability, becoming the dominant rotamer for the 9-EtG and Guo adducts. For L = 3'-GMP and 3'-IMP, stabilization of the endo form upon phosphate deprotonation at neutral pH was observed. This result is attributed to an H-bonding network involving water, the 3'-phosphate, and the Me(3)dien NH groups.  相似文献   
9.
[reaction: see text] The first asymmetric aminolysis of trans-aromatic epoxides with anilines is described. The process affords enantioenriched anti-beta-amino alcohols in up to 99% ee. The complete regio- and diastereoselectivity observed uses commercially available [Cr(Salen)Cl] as a Lewis acid catalyst and in combination with a very simple experimental procedure renders the present reaction a facile and practical tool for the synthesis of chiral nonracemic anti-beta-amino alcohols.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号