首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   30篇
化学   42篇
数学   1篇
物理学   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2013年   2篇
  2012年   7篇
  2011年   8篇
  2010年   10篇
  2009年   4篇
  2004年   2篇
排序方式: 共有44条查询结果,搜索用时 62 毫秒
1.
在程序升温条件下 ,用DSC研究了标题化合物的放热分解反应动力学 .用线性最小二乘法、迭代法以及二分法与最小二乘法相结合的方法 ,以积分方程、微分方程和放热速率方程拟合DSC数据 .在逻辑选择建立了微分和积分机理函数的最可几一般表达式后 ,用放热速率方程得到相应的表观活化能 (Ea)、指前因子 (A)和反应级数 (n)的值 .结果表明 :该反应的微分形式的经验动力学模式函数、Ea 和A值分别为 (1-α) 0 .44、2 30 .4kJ/mol和 10 18.16s-1.借助加热速率和所得动力学参数值 ,提出了标题化合物放热分解反应的动力学方程 .该化合物的热爆炸临界温度为 30 2 .6℃ .上述动力学参数对分析、评价标题化合物的稳定性和热变化规律十分有用 .  相似文献   
2.
(C6H(14)N2)[NH4(ClO4)3] is a newly developed porous hybrid inorganic-organic framework material with easy access and excellent detonation performances,however,its thermal properties is still unclear and severely hampered further applications.In this study,thermal behaviors and non-isothermal decomposition reaction kinetics of(C6H(14)N2)[NH4(ClO4)3] were investigated systematically by the combination of differential scanning calorimetry(DSC) and simultaneous thermal analysis methods.In-situ FTIR spectroscopy technology was applied for investigation of the structure changes of(C6H(14)N2) NH4(ClO4)3]and some selected referents for better understanding of interactions between different components during the heating process.Experiment results indicated that the novel molecular perovskite structure renders(C6H(14)N2)[NH4(ClO4)3] better thermal stability than most of currently used energetic materials.Underhigh temperature s,the stability of the cage skeleton constructed by NH4^+and ClO4^-ions determined the decomposition process rather than organic moiety confined in the skeleton.The simple synthetic method,good detonation performances and excellent thermal properties make(C6H(14)N2)[NH4(ClO4)3] an ideal candidate for the preparation of advanced explosives and propellants.  相似文献   
3.
以硝基甲烷为起始原料,经缩合、环化、氧化耦合、脱缩酮及硝化等5步反应合成了2,3-二羟甲基-2,3-二硝基-1,4-丁二醇四硝酸酯(BHDBT),总收率为36.1%,并采用核磁共振谱、红外光谱以及元素分析等进行了结构表征.用浓盐酸代替氯化氢气体,改进了关键中间体2,3-二羟甲基-2,3-二硝基-1,4-丁二醇(BHDB)的合成方法,并确定最佳反应条件为:刀(浓盐酸):n(BDND)=1.1∶1,反应温度55℃,时间4h,收率为94.8%.首次发现了BHDB和BHDBT的亚甲基质子具有磁不等价性,并从理论上分析其产生的原因.培养了BHDBT单晶,四元衍射晶体结构解析表明:BHDBT属于单斜晶系,空间群P2(1)/n,晶胞参数:a=0.81944(11) nm,b=2.3365(3) nm,c=0.85838(11) nm,a=90°,β=113.501(2)°,y=90°,V=1.5072(3) nm3,Z=4,Dc=1.852 g·cm-3,μ=0.189 mm-1,F(000)=856.BHDBT熔点为86.37℃,分解峰温度为185.79℃(DSC),摩擦感度为100% (3.92 MPa,90°),特性落高H50为10.0 cm(5 kg).  相似文献   
4.
采用分子动力学方法,在正侧(NVT)系综下研究了N-脒基脲二硝酰胺盐(FOX-12)在溶剂中的晶体形貌.通过构建溶剂分子层-晶面的界面吸附模型模拟其动力学平衡构型,计算溶剂与晶体表面间的结合能,进而对真空附着能进行修正并获得溶剂条件下的晶貌.使用自然冷却法在水和水/甲醇中培养FOX-12晶体并利用扫描电子显微镜进行了表征.结果表明,在真空条件下决定FOX-12晶貌的6个重要晶面为(110),(200),(201),(011),(002)和(111);FOX-12在水溶液条件下的主要晶面为(110)和(011),在水/甲醇溶液条件下的主要晶面为(200)和(011),预测的晶体形貌与实验结果相吻合.对水分子和FOX-12的(110)面间的径向分布函数进行了计算,分析了水分子和晶面间的分子间作用力.  相似文献   
5.
4‐Amino‐5‐nitro‐1,2,3‐triazole (ANTZ) and its derivatives, such as 2‐(4‐amino‐5‐nitro‐1,2,3‐trazole‐1‐yl)‐1,3,5‐trinitrobenzene (T‐ANTZ) and 4‐amino‐5‐nitro‐1,2,3‐triazole (M‐ANTZ), were synthesized and characterized, whose structures were confirmed by IR, NMR and elemental analysis. The thermal behaviors of ANTZ, T‐ANTZ and M‐ANTZ were studied by the methods of DSC and TG‐DTG, and the results showed that there is an obvious melting process of ANTZ with melting point of 278.38°C, while there is no melting process in the thermal behavior of T‐ANTZ and M‐ANTZ (the derivatives of ATNZ).  相似文献   
6.
7.
研究了1,3,5-三硝基-六氢化-1,3,5-三嗪-2(1H)-酮(Keto-RDX)的合成新方法,以乌洛托品和硝基胍为原料,通过Mannich反应得到2-硝亚胺基-六氢化-1,3,5-三嗪盐酸盐(NIHT·HCl),用HNO3/AC2O硝化可得Keto-RDX,并采用核磁共振、红外、质谱以及元素分析等进行了结构表征.培养了Keto-RDX单晶,晶体结构解析表明:晶体属于正交晶系,空间群Pnma,晶胞参数a=1.0057(17)nm,b=1.3483(2)nm,c=0.5982(10)nm,V=0.8112(2)nm3,Z=4,Dc=1.933 g/cm3,μ=0.188 mm-1,F(000)=480.差示扫描量热(DSC)法和热失重(TG/DTG)法分析表明,Keto-RDX分解峰温为211.4℃(DSC),在185.00~202.79℃为固相分解阶段,峰温为198.61℃,质量损失为21.45%,在202.79~230.00℃为液相分解阶段,质量损失为77.83%,峰温为213.78℃,热稳定性较RDX差.  相似文献   
8.
一锅法合成二硝基五亚甲基四胺反应机理的研究   总被引:1,自引:0,他引:1  
二硝基五亚甲基四胺(DPT)是高性能单质炸药奥克托金(HMX)的重要硝化前体.以尿素为起始原料,中间产物不分离,经硝化、水解、Mannich缩合等反应得到DPT,总收率63.2%.通过分离、捕获中间体以及同位素示踪实验研究了一锅法合成DPT的反应机理.分离出了稳定的中间体二硝基脲、硝酰胺和二羟甲基硝酰胺,用苯磺酰氯捕获到了活性中间体1-硝基-六氢均三嗪.以氘代甲醛、二羟甲基硝酰胺和氨缩合得到氘标记的DPT,1HNMR和MS分析结果表明:在反应过程中二羟甲基硝酰胺解离释放出甲醛和硝酰胺,小分子碎片随机组合生成了三嗪化合物,进而生成DPT.  相似文献   
9.
自行设计了3,4-双(4'-叠氮基呋咱-3'-基)氧化呋咱(DAZTF)的分子结构与合成方法,采用3-氨基呋咱-4-酰氯肟为原料,经重氮化、叠氮化、分子间缩合环化等反应合成目标化合物DAZTF,总收率为81%,并采用红外光谱、核磁共振光谱、质谱以及元素分析等进行了结构表征;首次培养了DAZTF单晶,X射线单晶衍射结果表明:DAZTF晶体属于单斜晶系,P2(1)/n空间群,a=1.1620(6)nm,b=0.6977(4)nm,c=1.4446(8)nm,α=90o,β=98.331(9)o,γ=90o,V=1.1589(11)nm3,Z=4,Dc=1.743g/cm3,μ=0.150mm-1,F(000)=608;同时,开展了DAZTF部分性能研究,其熔点50~52℃,分解温度204.20℃,摩擦感度86%~100%(90°摆角),撞击感度86%~100%(10kg,25cm).  相似文献   
10.
Thermal decomposition behavior and non‐isothermal decomposition reaction kinetics of nitrate ester plasticized polyether NEPE propellant containing ammonium dinitramide (ADN), which is one of the most important high energetic materials, were investigated by DSC, TG and DTG at 0.1 MPa. The results show that there are four exothermic peaks on DTG curves and four mass loss stages on TG curves at a heating rate of 2.5 K·min?1 under 0.1 MPa, and nitric ester evaporates and decomposes in the first stage, ADN decomposes in the second stage, nitrocellulose and cyclotrimethylenetrinitramine (RDX) decompose in the third stage, and ammonium perchlorate decomposes in the fourth stage. It was also found that the thermal decomposition processes of the NEPE propellant with ADN mainly have two mass loss stages with an increase in the heating rate, that is the result of the decomposition heats of the first two processes overlap each other and the mass content of ammonium perchlorate is very little which is not displayed in the fourth stage at the heating rate of 5, 10, and 20 K·min?1 probably. It was to be found that the exothermal peak temperatures increased with an increase in the heating rate. The reaction mechanism was random nucleation and then growth, and the process can be classified as chemical reaction. The kinetic equations of the main exothermal decomposition reaction can be expressed as: dα/dt=1012.77(3/2)(1?α)[?ln(1?α)]1/3 e?1.723×104/T. The critical temperatures of the thermal explosion (Tbe and Tbp) obtained from the onset temperature (Te) and the peak temperature (Tp) on the condition of β→0 are 461.41 and 458.02 K, respectively. Activation entropy (ΔS), activation enthalpy (ΔH), and Gibbs free energy (ΔG) of the decomposition reaction are ?7.02 J·mol?1·K?1, 126.19 kJ·mol?1, and 129.31 kJ·mol?1, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号