首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   3篇
力学   2篇
数学   3篇
  2020年   1篇
  2016年   4篇
排序方式: 共有5条查询结果,搜索用时 265 毫秒
1
1.
In this article, based on sampled‐data approach, a new robust state feedback reliable controller design for a class of Takagi–Sugeno fuzzy systems is presented. Different from the existing fault models for reliable controller, a novel generalized actuator fault model is proposed. In particular, the implemented fault model consists of both linear and nonlinear components. Consequently, by employing input‐delay approach, the sampled‐data system is equivalently transformed into a continuous‐time system with a variable time delay. The main objective is to design a suitable reliable sampled‐data state feedback controller guaranteeing the asymptotic stability of the resulting closed‐loop fuzzy system. For this purpose, using Lyapunov stability theory together with Wirtinger‐based double integral inequality, some new delay‐dependent stabilization conditions in terms of linear matrix inequalities are established to determine the underlying system's stability and to achieve the desired control performance. Finally, to show the advantages and effectiveness of the developed control method, numerical simulations are carried out on two practical models. © 2016 Wiley Periodicals, Inc. Complexity 21: 518–529, 2016  相似文献   
2.
3.
This article examines the reliable L2 – L control design problem for a class of continuous‐time linear systems subject to external disturbances and mixed actuator failures via input delay approach. Also, due to the occurrence of nonlinear circumstances in the control input, a more generalized and practical actuator fault model containing both linear and nonlinear terms is constructed to the addressed control system. Our attention is focused on the design of the robust state feedback reliable sampled‐data controller that guarantees the robust asymptotic stability of the resulting closed‐loop system with an L2 – L prescribed performance level γ > 0, for all the possible actuator failure cases. For this purpose, by constructing an appropriate Lyapunov–Krasovskii functional (LKF) and utilizing few integral inequality techniques, some novel sufficient stabilization conditions in terms of linear matrix inequalities (LMIs) are established for the considered system. Moreover, the established stabilizability conditions pave the way for designing the robust reliable sampled‐data controller as the solution to a set of LMIs. Finally, as an example, a wheeled mobile robot trailer model is considered to illustrate the effectiveness of the proposed control design scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 309–319, 2016  相似文献   
4.
In this paper, the consensus problem of uncertain nonlinear multi‐agent systems is investigated via reliable control in the presence of probabilistic time‐varying delay. First, the communication topology among the agents is assumed to be directed and fixed. Second, by introducing a stochastic variable which satisfies Bernoulli distribution, the information of probabilistic time‐varying delay is equivalently transformed into the deterministic time‐varying delay with stochastic parameters. Third, by using Laplacian matrix properties, the consensus problem is converted into the conventional stability problem of the closed‐loop system. The main objective of this paper is to design a state feedback reliable controller such that for all admissible uncertainties as well as actuator failure cases, the resulting closed‐loop system is robustly stable in the sense of mean‐square. For this purpose, through construction of a suitable Lyapunov–Krasovskii functional containing four integral terms and utilization of Kronecker product properties along with the matrix inequality techniques, a new set of delay‐dependent consensus stabilizability conditions for the closed‐loop system is obtained. Based on these conditions, the desired reliable controller is designed in terms of linear matrix inequalities which can be easily solved by using any of the effective optimization algorithms. Moreover, a numerical example and its simulations are included to demonstrate the feasibility and effectiveness of the proposed control design scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 138–150, 2016  相似文献   
5.
Nonlinear Dynamics - Based on state feedback control approach and disturbance observer method, a new composite synchronization control strategy is presented in this study for a class of delayed...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号