排序方式: 共有40条查询结果,搜索用时 0 毫秒
1.
We propose both robust and data-driven approaches to a fluid model of call centers that incorporates random arrival rates with abandonment to determine staff levels and dynamic routing policies. We test the resulting models with real data obtained from the call center of a US bank. Computational results show that the robust fluid model is significantly more tractable as compared to the data-driven one and produces overall better solutions to call centers in most experiments. 相似文献
2.
Dimitris Bertsimas 《Queueing Systems》1995,21(3-4):337-389
We survey a new approach that the author and his co-workers have developed to formulate stochastic control problems (predominantly queueing systems) asmathematical programming problems. The central idea is to characterize the region of achievable performance in a stochastic control problem, i.e., find linear or nonlinear constraints on the performance vectors that all policies satisfy. We present linear and nonlinear relaxations of the performance space for the following problems: Indexable systems (multiclass single station queues and multiarmed bandit problems), restless bandit problems, polling systems, multiclass queueing and loss networks. These relaxations lead to bounds on the performance of an optimal policy. Using information from the relaxations we construct heuristic nearly optimal policies. The theme in the paper is the thesis that better formulations lead to deeper understanding and better solution methods. Overall the proposed approach for stochastic control problems parallels efforts of the mathematical programming community in the last twenty years to develop sharper formulations (polyhedral combinatorics and more recently nonlinear relaxations) and leads to new insights ranging from a complete characterization and new algorithms for indexable systems to tight lower bounds and nearly optimal algorithms for restless bandit problems, polling systems, multiclass queueing and loss networks. 相似文献
3.
4.
We propose a novel robust optimization approach to analyze and optimize the expected performance of supply chain networks. We model uncertainty in the dema 相似文献
5.
Robust linear optimization under general norms 总被引:1,自引:0,他引:1
We explicitly characterize the robust counterpart of a linear programming problem with uncertainty set described by an arbitrary norm. Our approach encompasses several approaches from the literature and provides guarantees for constraint violation under probabilistic models that allow arbitrary dependencies in the distribution of the uncertain coefficients. 相似文献
6.
We propose techniques for the solution of the LP relaxation and the Lagrangean dual in combinatorial optimization and nonlinear programming problems. Our techniques find the optimal solution value and the optimal dual multipliers of the LP relaxation and the Lagrangean dual in polynomial time using as a subroutine either the Ellipsoid algorithm or the recent algorithm of Vaidya. Moreover, in problems of a certain structure our techniques find not only the optimal solution value, but the solution as well. Our techniques lead to significant improvements in the theoretical running time compared with previously known methods (interior point methods, Ellipsoid algorithm, Vaidya's algorithm). We use our method to the solution of the LP relaxation and the Langrangean dual of several classical combinatorial problems, like the traveling salesman problem, the vehicle routing problem, the Steiner tree problem, thek-connected problem, multicommodity flows, network design problems, network flow problems with side constraints, facility location problems,K-polymatroid intersection, multiple item capacitated lot sizing problem, and stochastic programming. In all these problems our techniques significantly improve the theoretical running time and yield the fastest way to solve them. 相似文献
7.
8.
9.
10.
We consider the survivable network design problem — the problem of designing, at minimum cost, a network with edge-connectivity requirements. As special cases, this problem encompasses the Steiner tree problem, the traveling salesman problem and thek-edge-connected network design problem. We establish a property, referred to as the parsimonious property, of the linear programming (LP) relaxation of a classical formulation for the problem. The parsimonious property has numerous consequences. For example, we derive various structural properties of these LP relaxations, we present some algorithmic improvements and we perform tight worst-case analyses of two heuristics for the survivable network design problem.The research of both authors was partially supported by the National Science Foundation under grant ECS-8717970 and the Leaders for manufacturing program at MIT. 相似文献