首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
化学   22篇
晶体学   1篇
数学   1篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
The novel title compound, [(CH3)4N]2[Ta6Br12(H2O)6]Br4·2H2O, with a [Ta6Br12]2+ cluster unit, has been prepared and structurally characterized. The compound crystallizes in space group C2/c, with a twofold axis passing through the cluster and the centre of symmetry located between the clusters. The nearest neighbouring cluster units are aligned along the crystallographic c axis, forming a one‐dimensional chain pattern.  相似文献   
3.
The title compound, [Ta6Br12(H2O)6](Br0.4Cl1.6)·8H2O, crystallizes in space group P. The structure contains two crystallographically independent [Ta6Br12(H2O)6]2+ cluster cations forming distinct layers parallel to the ab plane. The compound is isoconfigurational with the double salts [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br).  相似文献   
4.
5.
Central European Journal of Operations Research - This paper focuses on the analysis of business practice of insurance companies in selected post-transition European countries. Specifically, it...  相似文献   
6.
A new hexanuclear cluster compound, [Et4N][Ta6Br12(H2O)6]Br4·4H2O (Et=ethyl) (1), with the paramagnetic [Ta6Br12]3+ cluster entity, was synthesized and characterized by elemental and TG/DTA analyses, IR and UV/Vis spectroscopy and by a single-crystal X-ray diffraction study. The presence of the paramagnetic [Ta6Br12]3+ unit was confirmed also by the room-temperature magnetic and EPR measurements. The compound crystallizes in the tetragonal I41/a space group, with a=14.299(5), c=21.241(5) Å, Z=4, R1(F)/wR2(F2)=0.0296/0.0811. The structure contains discrete [Ta6Br12(H2O)6]3+ cations with an octahedron of metal atoms edge-bridged by bromine atoms and with water molecules occupying all six terminal positions. The cluster units are positioned in the vertices of the three-dimensional (pseudo)diamond lattice. The structure shows similarities with literature reported structures of cluster compounds crystallizing in the diamond space group.  相似文献   
7.
Acid-catalyzed methanolysis of N-hydroxy-α-oxobenzeneethanimidoyl chloride ( 1 ), a 2-(hydroxyimino)-1-phenylethan-1-one derivative obtained in one step from acetophenone, leads to a constant ratio of methyl α-oxobenzeneacetate ( 2 ) and methyl α-(hydroxyimino)benzeneacetate ( 3 ). 13C(α) Labelled [13C]- 1 affords 13C(α) labelled [13C]- 3 , thus discarding the hypothesis of its formation via 1,2-arene migration. The reported sequence opens a novel approach to phenylglyoxylic and mandelic acid esters (=α-oxobenzeneacetic and α-hydroxybenzeneacetic acid esters), from acetophenone. The molecular structures of 1 and 3 were determined by X-ray structure analysis and compared with previously reported crystallographic data of α-oxo-oximes (=α-(hydroxyimino) ketones) 4 and 6 – 8 . The unique stereoelectronic characteristics of the α-oxo-oxime moiety are discussed. All α-oxo-oximes share the following structural characteristics: (E)-configuration of the oxime C=N−OH bond (i.e. OH and C=O trans), the s-trans conformation of the oxo and imino moieties about the C(α)-C(=NOH) single bond, and intermolecular H-bonding. They differ from the isostructural β-diketone enols by the absence of resonance-assisted intramolecular H-bonding.  相似文献   
8.
With the aim of achieving bioorthogonal intracellular catalysis, a library of platinum(II) complexes was synthesized. Their non-toxicity to living cells was demonstrated and their catalytic activity was evaluated on a cyclization reaction leading to a highly fluorescent coumarin. None of the platinum complexes showed any catalytic activity for coumarin synthesis. Still, we demonstrated that the silver salt AgSbF6 commonly used to ‘activate’ metal catalysts by removing a chloride is a very efficient catalyst for the studied intramolecular cyclization reaction.  相似文献   
9.
Heme and nonheme-type flavone synthase enzymes, FS I and FS II are responsible for the synthesis of flavones, which play an important role in various biological processes, and have a wide range of biomedicinal properties including antitumor, antimalarial, and antioxidant activities. To get more insight into the mechanism of this curious enzyme reaction, nonheme structural and functional models were carried out by the use of mononuclear iron, [FeII(CDA-BPA*)]2+ (6) [CDA-BPA = N,N,N’,N’-tetrakis-(2-pyridylmethyl)-cyclohexanediamine], [FeII(CDA-BQA*)]2+ (5) [CDA-BQA = N,N,N’,N’-tetrakis-(2-quinolilmethyl)-cyclohexanediamine], [FeII(Bn-TPEN)(CH3CN)]2+ (3) [Bn-TPEN = N-benzyl-N,N’,N’-tris(2-pyridylmethyl)-1,2-diaminoethane], [FeIV(O)(Bn-TPEN)]2+ (9), and manganese, [MnII(N4Py*)(CH3CN)]2+ (2) [N4Py* = N,N-bis(2-pyridylmethyl)-1,2-di(2-pyridyl)ethylamine)], [MnII(Bn-TPEN)(CH3CN)]2+ (4) complexes as catalysts, where the possible reactive intermediates, high-valent FeIV(O) and MnIV(O) are known and well characterised. The results of the catalytic and stoichiometric reactions showed that the ligand framework and the nature of the metal cofactor significantly influenced the reactivity of the catalyst and its intermediate. Comparing the reactions of [FeIV(O)(Bn-TPEN)]2+ (9) and [MnIV(O)(Bn-TPEN)]2+ (10) towards flavanone under the same conditions, a 3.5-fold difference in reaction rate was observed in favor of iron, and this value is three orders of magnitude higher than was observed for the previously published [FeIV(O)(N2Py2Q*)]2+ [N,N-bis(2-quinolylmethyl)-1,2-di(2-pyridyl)ethylamine] species.  相似文献   
10.
The synthesis and crystal structure of the mononuclear title compound, [Co(C2O4)(C10H8N2)2]·5H2O, is reported. The Co atom is six‐coordinated by two O atoms of a bidentate oxalate group and by four N atoms of two bi­pyridine ligands. The neutral [Co(C2O4)(C10H8N2)2] entities are connected by π–π stacking interactions of the aromatic systems into a two‐dimensional layer, interconnected through a ladder‐like hydrogen‐bonding pattern of solvate water mol­ecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号