首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   12篇
数学   1篇
  2022年   1篇
  2019年   1篇
  2012年   1篇
  2010年   3篇
  2009年   3篇
  2002年   3篇
  1936年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
The direct electron transfer between 316 L stainless steel and the NAD-dependent hydrogenase from Ralstonia eutropha was studied by spectroelectrochemistry. The presence of hydrogenase and NAD+ clearly increased the quantity of electricity, which was consumed during the electrolysis performed at potential lower than -0.70 V/SCE. The involvement of hydrogenase in the cathodic depolarisation theory was discussed in the light of these results.  相似文献   
2.
Most bacteria known to be electrochemically active have been harvested in the anodic compartments of microbial fuel cells (MFCs) and are able to use electrodes as electron acceptors. The reverse phenomenon, i.e. using solid electrodes as electron donors, is not so widely studied. To our knowledge, most of the electrochemically active bacteria are Gram-negative. The present study implements a transitory electrochemical technique (cyclic voltammetry) to study the microbial catalysis of the electrochemical reduction of oxygen. It is demonstrated that a wide range of aerobic and facultative anaerobic bacteria are able to catalyze oxygen reduction. Among these electroactive bacteria, several were Gram-positive. The transfer of electrons was direct since no activity was obtained with the filtrate. These findings, showing a widespread property among bacteria including Gram-positive ones, open new and interesting routes in the field of electroactive bacteria research.  相似文献   
3.
4.
5.
The effect of Geobacter sulfurreducens cells was studied on the electrochemical behaviour of 304L stainless steel, emphasizing the role of the soluble electron acceptor (fumarate). In fumarate-lacking media, the presence of G. sulfurreducens induced free potential ennoblement in a few hours. This ennoblement has already been observed in standard media that contained fumarate. Our previous studies have shown that G. sulfurreducens shifted the pitting potential toward the positive values. The pits induced by the presence of the bacteria were wider and deeper than in the absence of bacteria. Here, in fumarate-lacking media, similar shift in pitting potential was observed, but the repassivation phase was strongly improved. AFM analysis showed that pits were identical with those observed in the absence of bacteria at lower potential. In contrast with all the previous work where G. sulfurreducens enhanced corrosion, here at a low concentration of electron acceptor, the presence of the bacteria protected the steel against pitting.  相似文献   
6.
The objective of the work was to give some first insight into an engineering-oriented approach to MFC design by focusing on anode optimisation. The effect of various parameters was firstly investigated in half cell set-ups under well-controlled conditions. Microbial anodes were formed from soil leachate under polarisation at -0.2 V vs. SCE with different concentrations of substrate, salt and buffer. It was shown that non-turnover CV could be used to assess the electroactive maturity of the anodes during polarisation. This first phase resulted in the definition of a set of optimal parameter values. In the second phase, an optimal anode was formed in a half-cell under the defined optimal conditions. A numerical approach was then developed to calculate the theoretical maximum power that the anode could provide in an ideal MFC. The concept of "ideal MFC" introduced here allowed the theoretical maximum power to be calculated on the sole basis of the kinetic characteristics of the anode. Finally, a MFC designed in the aim of approaching such ideal conditions generated stable power densities of 6.0 W m(-2), which were among the highest values reported so far. The discrepancy between the theoretical maximum (8.9 W m(-2)) and the experimental results pointed out some limit due to the source of inoculum and suggested possible paths to improvement.  相似文献   
7.
Geobacter sulfurreducens bacteria increased the open circuit potential of 304L stainless steel by around 320 mV in only a few hours after inoculation. This represents a significant increase in the corrosion risk. In contrast, the oxidation of acetate, which is catalysed by well-established biofilms, shifted the pitting potential towards positive values. In acetate-lacking media, pitting occurred with and without bacteria in the same range of potential values, but the presence of bacteria drastically increased the size of pits. AFM showed pits more than 10 times broader and deeper due to the presence of bacteria.In the absence of acetate, the masking effect due to acetate oxidation disappeared and the full corrosive effect of the biofilm was revealed.This also fully explains why pitting was predominantly observed close to surface areas where bacterial settlement was the densest.  相似文献   
8.
The purpose of this work was to design an electrochemical reactor to enhance the high selectivity of enzyme-catalysed processes. In order to develop economically efficient syntheses, the enzymes must be confined in the strict vicinity of the electrode surface. Here the confinement was achieved with a dialysis membrane in a so-called Dialysis-Membrane Electrochemical Reactor (D-MER). Oxidation of glucose into gluconic acid catalysed by glucose oxidase was a first example. The ADH-catalysed reduction of cyclohexanone into cyclohexanol was also tested in a new type of MER. NADH was electrochemically regenerated thanks to mediator (methyl viologen or rhodium complex). The key point in developing electro-enzymatic process is to ensure the perfect fitting of the reactor design to the reactions that are to be processed.  相似文献   
9.
10.
Microbial electrolysis cells (MEC) must work around neutral pH because of microbial catalysis at the anode. To develop a hydrogen evolution cathode that can work at neutral pH remains a major challenge in MEC technology. Voltammetry performed at pH 8.0 on rotating disk electrodes showed that the presence of phosphate species straightforwardly multiplied the current density of hydrogen evolution, through the so-called cathodic deprotonation reaction. The mechanism was stable on stainless steel cathodes whereas it rapidly vanished on platinum. The phosphate/stainless steel system implemented in a 25 L MEC with a marine microbial anode led to hydrogen evolution rates of up to 4.9 L/h/m2 under 0.8 V voltage, which were of the same order than the best performance values reported so far.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号