首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30923篇
  免费   5081篇
  国内免费   4233篇
化学   22941篇
晶体学   344篇
力学   2051篇
综合类   364篇
数学   3568篇
物理学   10969篇
  2024年   70篇
  2023年   540篇
  2022年   977篇
  2021年   1007篇
  2020年   1226篇
  2019年   1164篇
  2018年   1041篇
  2017年   883篇
  2016年   1418篇
  2015年   1462篇
  2014年   1745篇
  2013年   2223篇
  2012年   2611篇
  2011年   2875篇
  2010年   1982篇
  2009年   1874篇
  2008年   2003篇
  2007年   1738篇
  2006年   1708篇
  2005年   1466篇
  2004年   1348篇
  2003年   1058篇
  2002年   1115篇
  2001年   957篇
  2000年   804篇
  1999年   690篇
  1998年   556篇
  1997年   430篇
  1996年   495篇
  1995年   449篇
  1994年   378篇
  1993年   300篇
  1992年   305篇
  1991年   260篇
  1990年   231篇
  1989年   179篇
  1988年   119篇
  1987年   114篇
  1986年   90篇
  1985年   94篇
  1984年   47篇
  1983年   50篇
  1982年   44篇
  1981年   29篇
  1980年   18篇
  1979年   11篇
  1977年   5篇
  1975年   6篇
  1969年   4篇
  1957年   9篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Zhang  Bing  Yang  Jie-qin  Liu  Ying  Hu  Bin  Yang  Yang  Zhao  Li  Lu  Qiang 《Cellulose (London, England)》2022,29(12):6565-6578
Cellulose - Heating is essential in various biomass pre-treatments and thermal conversion processes. It is of practical significance to study the characteristics of cellulose-lignin and...  相似文献   
2.
From the implementation point of view, the printable magnetic Janus colloidal photonic crystals (CPCs) microspheres are highly desirable. Herein, we developed a dispensing-printing strategy for magnetic Janus CPCs display via a microfluidics-automatic printing system. Monodisperse core/shell colloidal particles and magnetic Fe3O4 nanoparticles precursor serve as inks. Based on the equilibrium of three-phase interfacial tensions, Janus structure is successfully formed, followed by UV irradiation and self-assembly of colloid particle to generate magnetic Janus CPCs microspheres. Notably, this method shows distinct superiority with highly uniform Janus CPCs structure, where the TMPTA/Fe3O4 hemisphere is in the bottom side while CPCs hemisphere is in the top side. Thus, by using Janus CPCs microspheres with two different structural colors as pixel points, a pattern with red flower and green leaf is achieved. Moreover, 1D linear Janus CPCs pattern encapsulated by hydrogel is also fabricated. Both the color and the shape can be changed under the traction of magnets, showing great potentials in flexible smart displays. We believe this work not only offers a new feasible pathway to construct magnetic Janus CPCs patterns by a dispensing-printable fashion, but also provides new opportunities for flexible and smart displays.  相似文献   
3.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
4.
5.
A strategy based on covalent organic frameworks for ultrafast ion transport involves designing an ionic interface to mediate ion motion. Electrolyte chains were integrated onto the walls of one-dimensional channels to construct ionic frameworks via pore surface engineering, so that the ionic interface can be systematically tuned at the desired composition and density. This strategy enables a quantitative correlation between interface and ion transport and unveils a full picture of managing ionic interface to achieve high-rate ion transport. Moreover, the effect of interfaces was scaled on ion transport; ion mobility is increased in an exponential mode with the ionic interface. This strategy not only sets a benchmark system but also offers a general guidance for designing ionic interface that is key to systems for energy conversion and storage.  相似文献   
6.
A photoluminescent bimetallic cluster [Ag10Cu6(bdppthi)2(C≡CPh)12(MeOH)2(H2O)](ClO4)4 ( 1 , bdppthi=N,N’-bis(diphenylphosphanylmethyl)-tetrahydroimidazole} was synthesized from the PNNP type ligand bdppthi generated in-situ. Upon excitation at 365 nm, 1 exhibited strong phosphorescent emission at 630 nm, which was selectively quenched by NH3 in air or water. The sensing of NH3 was rapid and recoverable, with detection limits of 53 ppm (v/v) in N2 and 21 μmol/L (0.36 ppm, w/w) for NH3 ⋅ H2O in water. Cluster 1 could potentially serve as a bifunctional chemical sensor for the efficient detection of ammonia in waste-gas and waste-water.  相似文献   
7.
By tuning the length and rigidity of the spacer of bis(biurea) ligands L, three structural motifs of the A2L3 complexes (A represents anion, here orthophosphate PO43?), namely helicate, mesocate, and mono‐bridged motif, have been assembled by coordination of the ligand to phosphate anion. Crystal structure analysis indicated that in the three complexes, each of the phosphate ions is coordinated by twelve hydrogen bonds from six surrounding urea groups. The anion coordination properties in solution have also been studied. The results further demonstrate the coordination behavior of phosphate ion, which shows strong tendency for coordination saturation and geometrical preference, thus allowing for the assembly of novel anion coordination‐based structures as in transition‐metal complexes.  相似文献   
8.
Embedding endohdedral metallofullerenes (EMFs) into electron donor–acceptor systems is still a challenging task owing to their limited quantities and their still largely unexplored chemical properties. In this study, we have performed a 1,3‐dipolar cycloaddition reaction of a corrole‐based precursor with Sc3N@C80 to regioselectively form a [5,6]‐adduct ( 1 ). The successful attachment of the corrole moiety was confirmed by mass spectrometry. In the electronic ground state, absorption spectra suggest sizeable electronic communications between the electron acceptor and the electron donor. Moreover, the addition pattern occurring at a [5,6]‐bond junction is firmly proven by NMR spectroscopy and electrochemical investigations performed with 1 . In the electronically excited state, which is probed in photophysical assays with 1 , a fast electron‐transfer yields the radical ion pair state consisting of the one‐electron‐reduced Sc3N@C80 and of the one‐electron‐oxidized corrole upon its exclusive photoexcitation. As such, our results shed new light on the practical work utilizing EMFs as building blocks in photovoltaics.  相似文献   
9.
Sulfur hexafluoride (SF6) is considered as a potent greenhouse gas, whose effective degradation is challenging. Here we report a computational study on the nucleophilic activation of sulfur hexafluoride by N-heterocyclic carbenes and N-heterocyclic olefins. The result shows that the activation of SF6 is both thermodynamically and kinetically favorable at mild condition using NHOs with fluoro-substituted azolium and sulfur pentafluoride anion being formed. The Gibbs free energy barrier during the activation of SF6 has a linear relationship with the energy of HOMO of substrates, which could be a guideline for applying those compounds that feature higher energy in HOMO to activate SF6 in high efficiency.  相似文献   
10.
In order to investigate the characteristics of force chains in a granular flow system, a parallel plate shear cell is constructed to simulate the shear movement of an infinite parallel plate and observe variations in relevant parameters. The shear dilatancy process is divided into three stages, namely, plastic strain, macroscopic failure, and granular recombination. The stickslip phenomenon is highly connected with the evolution of force chains during the shear dilatancy process. The load–distribution rate curves and patterns of the force chains are utilized to describe the load-carrying behaviors and morphologic changes of force chains separately. Force chains, namely, “diagonal gridding,” “tadpole-shaped,” and “pinnate” are defined according to the form of the force chains in the corresponding three stages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号