首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
化学   1篇
数学   1篇
物理学   5篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2007年   1篇
  2004年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
郭俊华  张琨  刘为民  钱士雄  郭立俊 《光子学报》2007,36(12):2205-2208
采用飞秒泵浦探测技术研究了紫细菌外周捕光天线LH2中的超快光动力学过程.从B800蓝侧的激发态动力学中观察到B800到B850的能量传递时间,实验结果与理论计算结果的差别说明激发B800时可能引起B850上激子带的直接激发,或存在由B800到B850上激子态的能量传递通道.在B800红侧激发的动力学过程中,漂白信号前端存在的一个快速光吸收信号主要来源于B850上激子带的直接激发.在天然RS601和突变体GM309的LH2中,800 nm激发时的动力学过程都表现为一个类似的光漂白过程,动力学曲线的衰减时间常量在天然LH2中明显快于突变体中,说明在GM309中B800到B850的激发能传递速率有所降低.而在845 nm激发下两个样品中的快过程类似,但慢过程在GM309中有所增快,激发态中的能量重新分布包括逆向的能量传递也受到类胡萝卜素微结构的影响.  相似文献   
2.
采用热注入法制备空气稳定性良好的CsPbBrI2量子点,以375 nm的脉冲激光作为激发光源研究其光致发光性能.通过旋涂的方式制备相应薄膜,将其作为光敏层应用到光探测器,并对器件的光电子性能和稳定性进行详细研究.结果表明:CsPbBrI2量子点在635nm附近有强烈的荧光效应,光谱发光峰较窄,半峰宽约为35 nm.CsPbBrI2量子点禁带宽度为1.90eV,制备的探测器光检测带宽从紫外光260nm到红光650 nm,光响应度为0.26 A/W,高开/关比高达104,上升/衰减时间为3.5 ms/3.5 ms.在25℃,湿度在25%~35%大气环境下存储60天,性能与初始值相比几乎没有变化.CsPbBrI2量子点具有优异的稳定性、可制备高性能的宽带光检测和易于制造等优点,具备一定的应用前景.  相似文献   
3.
使用AFORS-HET软件模拟研究HIT太阳电池能带结构,讨论了发射区p型反转层的形成及影响因素,及其对电池性能的影响。结果表明:在n型单晶硅内,与p型非晶硅异质结界面处,形成p型反转层;p-Si∶H的掺杂浓度可调节费米能级位置,进而影响反转层的形成。HIT电池类似于p-n同质结电池,p型反转层作为太阳电池发射层,对太阳电池的性能起决定性作用。  相似文献   
4.
亚波长光栅结构表现出优异的陷波滤光特性,其经典设计是设定亚波长的几何结构参数,求解麦克斯韦方程组,设定优化算法求解出最优解,需要消耗大量的时间和计算资源.提出一种基于深度学习的逆向设计方法,搭建了可以同时实现正向模拟与逆向设计的串联神经网络.基于python语言的Tensorflow库进行网络搭建;优化均匀波导层的高度...  相似文献   
5.
知识资本是企业价值系统的参变量 ,其存量和水平支配着并购企业的命运 .从知识和能力整合的角度出发 ,根据并购双方知识资本系统整合的机理和特点 ,建立了知识资本演化的数学模型 ,并且通过模型的数值分析模拟了并购后知识资本存量变化的过程和发展趋势 .  相似文献   
6.
利用飞秒抽运探测技术及时间分辨荧光(TRPL)等光谱技术对高等植物LHCⅡ中的超快光动力学过程进行了研究。在其时间分辨荧光光谱中表现出了明显的各向异性特性。实验上观察了LHCⅡ中色素间的能量传递过程,由飞秒动力学发现,单体内Chlb到邻近的Chla之间的能量传递在200~300fs的时间尺度,Chla激子带间的能量弛豫发生在几百飞秒,不同单体Chla分子间能量分布过程在几个皮秒。而时间分辨荧光和飞秒动力学过程中上百皮秒的慢过程归属于不同聚集体间的能量平衡过程或分子构象变化。  相似文献   
7.
主要用飞秒抽运-探测技术观察了紫细菌Rb. sphaeroides 601外周捕光天线LH2中细菌叶绿素(BChl)之间的能量传递过程. 在783 nm的激光激发B800情况下, 在B800到B850的能量传递之前, 存在一个约0.35 ps的分子内能量重新分布过程; 通过调节激发波长, 清楚地观察到激发态BChl分子的动力学演变过程. 结果表明基态漂白和激发态吸收存在明显的竞争, 同时在818 nm处出现一个鞍点, 说明在B800的激发态和B850的上激子态存在快速、高效的能量传递; B850分子上激子态的激发能将通过内转换向次最低激发态快速弛豫, 并导致最低激发态布局和分子构象变化.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号