首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
力学   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
This paper studies various microstructure parameters of natural and artificial building materials and aims to their correlation to the water vapor permeability. Three categories of building materials were investigated: stones, bricks, and plasters. Mercury intrusion porosimetry was applied in order to obtain the materials microstructure characteristics, a variety of pore size distributions and pore structure measurements, such as total porosity. The water vapor permeability of materials was determined experimentally according to ASTM standard E96-00. A robust principal component regression approach, coupled with multiple outlier detection, was applied in order to correlate water vapor permeability values to pore size distributions. A good quality correlation model was found by utilizing relative specific pore volume and relative specific pore surface distributions, whereas using pore structure measurements, such as total porosity, the correlation results were very poor. From the results, specific ranges of pore size distribution, corresponding to pores radius sizes greater than $10\,\upmu \text{ m }$ 10 μ m and between 1.778 and $0.421\,\upmu \text{ m }$ 0.421 μ m , contribute to the water vapor permeability of the materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号