首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
力学   6篇
数学   4篇
物理学   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2004年   1篇
排序方式: 共有11条查询结果,搜索用时 203 毫秒
1.
Nonlinear Dynamics - We numerically analyzed the supratransmission phenomenon in the discrete nonlinear Schrödinger equation with the cubic–quintic nonlinearity. It has been reported...  相似文献   
2.
This paper deals with problems for which it is necessary to represent the oscillations of the electromechanical seismograph about their position of equilibrium as regards the synchronous condition. The loss of stability of the system occurs through a saddle-node bifurcation, where there is a collision of the stable orbit with an unstable one. Then, global bifurcations and chaotic dynamics of an electromechanical seismograph are the aims of this study. The electrical part of the model is described by an extended force Rayleigh oscillator with Φ 6-potential, while the mechanical part is described by a damped and driven linear oscillator. By using the direct perturbation technique, we analytically obtain the general solution of the first-order equation. Through the boundedness condition of the general solution we get the famous Melnikov function predicting the onset of chaos in the case where the Φ 6-potential is three wells, which are complemented by numerical simulations by which we illustrate the bifurcation curves and the fractality of the basins of attraction. The results show that the threshold amplitude of harmonic excitation for the onset of instability will move upwards as the amplitude intensity of the ground motion increases. These results suggest that much attention should be paid to controlling the increase of the amplitude of the ground motion, especially when the harmonic excited electromechanical seismograph system as a main device is applied to some practical systems.  相似文献   
3.
Dynamics and chaos control in nonlinear electrostatic transducers   总被引:2,自引:0,他引:2  
In this paper, we analyze the dynamics of a system consisting of two coupled nonlinearly Duffing oscillators, obtained from a nonlinear electrostatic device which is a prototype of emitters and receivers in communication engineering. Inverse or backward period doubling cascades and sudden transition to chaos are observed. A sliding mode controller is applied to control the electrostatic transducers system. The sliding surface used is one dimension higher than the traditional surface and guarantees its passage through the initial states of the controlled system. By means of the design of sliding mode dynamics characteristics, the controlled system performance is arbitrarily determined by assigning the switching gain of the sliding mode dynamics. Therefore, using the characteristic of this sliding mode we aim to design a controller that can meet the desired specification and use less control energy by comparing with the result in the current literature. The results show that the proposed controller can steer electrostatic transducers to the desired reference trajectory without chattering phenomenon and abrupt state change.  相似文献   
4.
5.
We investigate the principal parametric resonance of a Rayleigh–Duffing oscillator with time-delayed feedback position and linear velocity terms. Using the asymptotic perturbation method, we obtain two slow flow equations on the amplitude and phase of the oscillator. We study the effects of the frequency detuning, the deterministic amplitude, and the time-delay on the dynamical behaviors, such as stability and bifurcation associated with the principal parametric resonance. Moreover, the appropriate choice of the feedback gain and the time-delay is discussed from the viewpoint of vibration control. It is found that the appropriate choice of the time-delay can broaden the stable region of the non-trivial steady-state solutions and enhance the control performance. Theoretical stability analysis is verified through a numerical simulation.  相似文献   
6.
We study the dynamics of neurons via a bistable modified stochastic FitzHugh–Nagumo model having two stable fixed points separated by one unstable fixed point. Due to the ability of a neuron to detect and enhance weak information transmission, we show numerically that starting from the resting potential, we get firing activities (spiking) when operating slightly beyond the supercritical Hopf bifurcation. For real biological systems which are sometimes embedded in the complex environment, we observe that a gradual increase or decrease noise intensities did not result in a gradual change of the membrane potential distribution thanks to noise induced transition phenomena. We shown analytically that for zero correlation between two sine Wiener noises, additive noise has no effect on the transition between monostable and bistable phase on the neural model. We adapted a general expression of the signal-to-noise ratio for a general two-state theory extended in the asymmetric case and non-Gaussian noises in our model to study the influence of noise strength in stochastic resonance. Our investigation revealed that in the evolution of excitable system, neurons may use noises to their advantage by enhancing their sensitivity near a preferred phase to detect external stimuli or affect the efficiency and rate of information processing.  相似文献   
7.
We show that a discrete electrical transmission line, such as a Band-pass filter is modeled by the Salerno equation at the upper cutoff mode. Special interest is paid to the investigation of stationary localized solutions supported by this equation for some given experimental parameters. Applying a map approach, the profiles of single and two bright solitons are obtained. Linear stability and direct numerical simulations are performed and the results show that a single bright soliton is stable while two bright ones are unstable and lead to a single bright soliton. Finally, we show that the lifespan of two hump solitons increases depending on the length thrust range of the kicked initial condition.  相似文献   
8.
In this paper, an analog testing circuit and determinist averaging method for a vibration energy harvesting system with fractional derivative and nonlinear damping under a sinusoidal vibration source is proposed in order to predict the system response and its stability. The objective of this paper is to show that there is a possibility to make a pre-experimental design of the structure by using analog circuit and discussing the performance of a system with fractional derivative. Bifurcation diagram, poincaré maps and power spectral density are provided to deeply characterize the dynamic of the system. These results are corroborated by using 0–1 test. By using the Melnikov method, we find the necessary condition for which homoclinic bifurcation occurs. Understanding and predicting this bifurcation is very judicious in the energy harvesting field because it may lead to different types of motion in the perturbed system. The appearance of chaotic vibrations increases the frequency’s bandwidth of the harvester thereby, allowing to harvest more energy. The pre-experimental investigation is carried out through appropriate software electronic circuit (Multisim®). The corresponding electronic circuit is designed exhibiting transient to chaos in accord with numerical simulations. The impact of fractional derivatives is presented upon the power generated by the system. In addition, by combining the harmonic force and a random excitation, the stochastic resonance appears, giving rise to large amplitude of vibration and consequently, enhancing the performance of the system. The results obtained in this work show the interest of using the electronic circuit to make the experiment analysis of the physical structure and also, the effects of the use of piezoelectric material exhibiting fractional properties in this research field.  相似文献   
9.
Fezeu  G. J.  Fokou  I. S. Mokem  Buckjohn  C. Nono Dueyou  Siewe  M. Siewe  Tchawoua  C. 《Meccanica》2020,55(9):1679-1691
Meccanica - In this present work, a hybrid energy scavenger using two mechanisms of transduction namely piezoelectric and electromagnetic and subjected to the Gaussian white noise is investigated....  相似文献   
10.
We investigate global bifurcation of a Bose–Einstein condensate with both repulsive two-body interaction between atoms and attractive three-body interaction loaded into a traveling optical lattice. Slow-flow equations of the traveling wave function are the first to derive and the reduced amplitude equation is obtained. The Melnikov method is applied on the reduced parametrically driven system and the Melnikov function is subsequently established. Effects of different physical parameters on the global bifurcation are studied analytically and numerically, and different chaotic regions of the parameter space are found. The results suggest that optical intensity may help to enhance chaos while the strength of the effective three-body interaction, the velocity of the optical lattice, and the damping coefficients annihilate or reduce chaotic behavior of the steady-state traveling wave solution of the particle number density of a Bose–Einstein condensate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号