首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
化学   3篇
力学   52篇
数学   6篇
物理学   1篇
  2019年   1篇
  2013年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1976年   1篇
  1968年   1篇
排序方式: 共有62条查询结果,搜索用时 109 毫秒
1.
The study of protein kinetics requires an accurate measurement of isotopic ratios of peptides. Although Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometers yield accurate mass measurements of analytes, the isotopologue ratios are consistently lower than predicted. Recently, we demonstrated that the magnitude of the spectral error in the FT-ICR mass spectrometer is proportional to the scan duration of ions. Here, we present a novel isotopic ratio extrapolation (IRE) method for obtaining accurate isotopic ratio measurements. Accuracy is achieved by performing scans with different duration and extrapolation of the data to the initial moment of the ion rotation; IRE minimizes the absolute isotopic ratio error to ≤1 %. We demonstrate the application of IRE in protein turnover studies using 2H2O-metabolic labeling. Overall, this technique allows accurate measurements of the isotopic ratios of proteolytic peptides, a critical step for enabling routine studies of proteome dynamics.   相似文献   
2.
The composite effects of viscosity, porosity, buoyancy parameter, thermal conductivity ratio and non-Darcy effects of Brinkman friction and Forscheimmer quadratic drag on the mixed convection boundary layer flow past a semi-infinite plate in a fully-saturated porous regime are theoretically and numerically investigated using Keller’s implicit finite-difference technique and a double-shooting Runge-Kutta method. The Brinkman Forcheimer-extended Darcy model is implemented in the hydrodynamic boundary layer equation. The effects of the various non-dimensional thermofluid parameters, viz Grashof number, Darcy number, and Forchheimer number, and also porosity, thermal conductivity and viscosity parameters on the velocity and temperature fields are discussed. Computations for both numerical schemes are made where possible and found to be in excellent agreement.  相似文献   
3.
 The flow of an incompressible grey fluid through a horizontal channel filled with a saturated medium of variable viscosity has been considered in this paper. Such flows in porous media have several applications in industrial processes. For the radiative effects a two flux model has been used in order to simplify the governing integro-differential equations for which closed-form solutions are not obtainable. The problem has been solved by employing a highly successful tri-diagonal, implicit, iterative, finite difference method. The effects of the pertinent parameters on the velocity and temperature distributions have been shown in several figures. Received on 6 December 1999  相似文献   
4.
This paper analyses steady two-dimensional mixed convection of an imcompressible viscous fluid in a porous medium past a hot vertical plate. Assuming Darcy-Brinkman model for the flow in a porous medium, the boundary layer equations are integrated numerically to obtain the non-similar solution for the velocity and temperature distribution for several values of the permeability and viscous dissipation parameters. It is shown that for a fixed value of Prandtl number Pr and dissipation parameter E, the skin-friction at the plate decreases with increase in the permeability parameter K1. However for the same value or Pr and E, the heat transfer rate at the plate increases with increasing K1. The dimensionlcss velocity and temperature functions in the flow are plotted for several values of E and K1 with Pr = 0.73. It is also shown that for fixed values of K1, and KPr, the skin-friction increases with increase in the dissipation parameter E.  相似文献   
5.
A numerical solution to the MHD stability problem for dissipative Couette flow in a narrow gap is presented under following conditions: (i) the inner cylinder rotating with the outer one stationary, (ii) co-rotating cylinders, (iii) counter-rotating cylinders, (iv) an axially applied magnetic field, and (v) conducting and non-conducting walls.Results for the critical wave number and the critical Taylor number are presented and are compared with those of Chandrasekhar (1953). The agreement is very good. The amplitude of the radial velocity and the cell-pattern are shown on graphs for both the conducting and non-conducting walls and for different values of ± (=2/1, 2-the angular velocity of the outer cylinder, 1-the angular velocity of the inner cylinder) and Q the magnetic field parameter which is the square of the Hartman number. The effects of ± and Q on the stability of the flow are discussed. It is seen that the effect of the magnetic field is to inhibit the onset of instability, it being more so in the presence of conducting walls than in the presence of non-conducting walls.  相似文献   
6.
An analysis is performed to study the unsteady combined forced and free convection flow (mixed convection flow) of a viscous incompressible electrically conducting fluid in the vicinity of an axisymmetric stagnation point adjacent to a heated vertical surface. The unsteadiness in the flow and temperature fields is due to the free stream velocity, which varies arbitrarily with time. Both constant wall temperature and constant heat flux conditions are considered in this analysis. By using suitable transformations, the Navier–Stokes and energy equations with four independent variables (x, y, z, t) are reduced to a system of partial differential equations with two independent variables (, ). These transformations also uncouple the momentum and energy equations resulting in a primary axisymmetric flow, in an energy equation dependent on the primary flow and in a buoyancy-induced secondary flow dependent on both primary flow and energy. The resulting system of partial differential equations has been solved numerically by using both implicit finite-difference scheme and differential-difference method. An interesting result is that for a decelerating free stream velocity, flow reversal occurs in the primary flow after certain instant of time and the magnetic field delays or prevents the flow reversal. The surface heat transfer and the surface shear stress in the primary flow increase with the magnetic field, but the surface shear stress in the buoyancy-induced secondary flow decreases. Further the heat transfer increases with the Prandtl number, but the surface shear stress in the secondary flow decreases.  相似文献   
7.
This paper investigates the effect of radiation on the forced and free convection flow of an optically dense viscous incompressible fluid along a heated vertical flat plate with uniform free stream and uniform surface temperature with Rosseland diffusion approximation. With appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity equations valid in the forced convection regime as well as in the free convection regime. A group of transformation is, also, introduced to reduce the boundary layer equations to a set of local nonsimilarity equations valid in both the forced and free convection regimes. Solutions of the governing equations are obtained by employing the implicit finite difference methods together with Keller box scheme and are expressed in terms of local shear stress and local rate of heat transfer for a range of values of the pertinent parameters.  相似文献   
8.
The problem of mixed convective non-steady three dimensional flow of a micropolar fluid near the stagnation point of a blunt nosed body has been discussed. The governing set of differential equations are solved using the Finite Element Method. The velocity and microrotation distribution are shown graphically to depend upon four parameters namely the micropolar parameter, Grashof number, buoyancy parameter and the degree of acceleration. The conclusions are quite interesting from the application point of view. Received on 4 June 1997  相似文献   
9.
10.
A boundary-layer model is described for the two-dimensional nonlinear transient thermal convection heat and mass transfer in an optically-thick fluid in a Darcian porous medium adjacent to an impulsively started vertical surface, in the presence of significant thermal radiation and buoyancy forces in an (X1,Y1,t1) coordinate system. An algebraic approximation is employed to simplify the integro-differential equation of radiative transfer for unidirectional flux normal to the plate into the boundary-layer regime, by incorporating this flux term in the energy conservation equation. The conservation equations are non-dimensionalized into an (X,Y,T) coordinate system and solved using the Network Simulation Method (NSM), a robust numerical technique which demonstrates high efficiency and accuracy. The transient variation of non-dimensional streamwise velocity component (u) and temperature (T) and concentration (C) functions is computed for various selected values of Stark number (radiation–conduction interaction parameter) and Darcy number. Transient velocity (u) and steady-state local skin friction (τX) are also studied for various thermal Grashof number (Gr), species Grashof number (Gm), Schmidt number (Sc) and Stark number (N) values. These computations for the infinite permeability case (Da  ∞) are compared with previous finite difference solutions [Prasad et al. Int J Therm Sci 2007;46(12):1251–8] and shown to be in excellent agreement. An increase in Darcy number is seen to accelerate the flow and boost velocity. A decrease in Stark number (corresponding to an increase in thermal radiation heat transfer contribution) is shown to increase the velocity values. Temperature function is observed to fall in value with a rise in Da and increase with decrease in N (corresponding to an increase in thermal radiation heat transfer contribution). Applications of the study include rocket combustion chambers, astrophysical flows, spacecraft thermal fluid dynamics in debris-laden environments (cosmic dust), heat transfer in forest fire spread, geochemical contamination and ceramic materials processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号