首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   2篇
化学   30篇
力学   4篇
数学   4篇
物理学   17篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2015年   2篇
  2013年   4篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1975年   3篇
  1973年   2篇
  1933年   1篇
  1928年   1篇
排序方式: 共有55条查询结果,搜索用时 93 毫秒
1.
CrIII Phthalocyaninates: Synthesis, Properties, and Crystal Structure of l-Bis(triphenylphosphine)iminium trans-Di(nitrito(O))phthalocyaninato(2–)chromate(III) [Cr(H2O)2Pc2?]Ix reacts with excess (PNP)NO2 in dimethylformamide to yield less soluble greenblack l-bis(triphenylphosphine)iminium trans-di(nitrito(O))phthalocyaninato(2–)chromate(III), l(PNP)trans[Cr(ONO)2Pc2?], which crystallizes in the triclinic space group P1 (No. 2) with Z = 2. The Cr atom is in the center of the Pc2? ligand and the two nitrite ions are monodentate O-coordinated in a mutually trans arrangement to the Cr atom. The Cr? O and Cr? Niso bond distances are 1.9898(14) und 1.981(2) Å, respectively. The geometric data of the coordinated nitrite ion are: d(N? O) = 1.307(2) Å; d(N? O) = 1.205(2) Å; ?(O? N? O) = 113.7(2)°; ?(Cr? O? N) = 116.85(12)°. The non-bonding O atoms are trans to the Cr atom. The Pc2? ligand is slightly saddled. Three weak spin-allowed trip-quartet(TQ) transitions (in 103 cm?1): TQ1 (8.20) < TQ2 (11.3) < TQ3 (20.33) and the characteristic π-π* transitions of the Pc2? ligand: B (14.68) < Q1 (27.1) < Q2 (29.0) < N (35.4) are observed in the UV-VIS-NIR spectrum. Prominent luminescence spectra are obtained by excitation within the TQ1 region, in which the spin-forbidden trip-sextet transition at 7376 cm?1 dominates at low temperatures (T < 50 K). The vibrational spectra are discussed. In coincidence of the excitation lines with TQ3, vs(Cr? O) at 378 cm?1 is selectively resonance Raman (RR) enhanced. vas(Cr? O) is observed in the FIR spectrum at 391 cm?1. The following internal vibrations (in cm?1) of the nitrito ligand are in the MIR spectrum: vas(N? O)/1447 > vas(N? O)/1018/1029 > δ(O? N? O)/828 and in the RR-spectrum: vs(N? O)/1410 > vs(N? O)/952, the last followed by three overtones.  相似文献   
2.
Coupling between P and (N)? H has been observed in the 1H{14N}NMR spectra of a series of phosphorus substituted thioformamides, R12/P(X)C(S)NHR2. For R2 = H one of the two couplings constants 3J(PCNH) is much larger than the other. The larger constant is assumed to be 3J(PCNH) (trans) and the magnitude of 3J(PCNH) for several compounds with R2 = Me or Ph is used to assign the configuration about the C(S)? N bond.  相似文献   
3.
4.
A new incoherent vibration-rotational Raman spectrum of 16O2 recorded by means of an interferometer is presented. The measured wavenumbers are analyzed together with a coherent Raman spectrum, six different microwave spectra from the vibrational ground state, and one microwave spectrum from the first vibrationally excited state in one fit. Due to the non-linear energy expression for oxygen, such an analysis requires the use of an iteration to find the minimum for the so-called merit function. A method has been developed to secure a stable iteration. The energy expression originally contains 21 constants. A systematic search leads to a reduction of this to 19 constants to make the fit possible. This results in two solutions, which are, however, only two different ways of indicating the one final energy function. The systematic use of iterations reduces the influence of the computational uncertainty on the final molecular constants to be orders of magnitude lower than the uncertainty due to the experimental errors.  相似文献   
5.
6.
7.
For two‐phase flow models, upwind schemes are most often difficult do derive, and expensive to use. Centred schemes, on the other hand, are simple, but more dissipative. The recently proposed multi‐stage (MUSTA ) method is aimed at coming close to the accuracy of upwind schemes while retaining the simplicity of centred schemes. So far, the MUSTA approach has been shown to work well for the Euler equations of inviscid, compressible single‐phase flow. In this work, we explore the MUSTA scheme for a more complex system of equations: the drift‐flux model, which describes one‐dimensional two‐phase flow where the motions of the phases are strongly coupled. As the number of stages is increased, the results of the MUSTA scheme approach those of the Roe method. The good results of the MUSTA scheme are dependent on the use of a large‐enough local grid. Hence, the main benefit of the MUSTA scheme is its simplicity, rather than CPU ‐time savings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
8.
9.
The ν11 infrared band of gaseous benzene C6H6 is recorded at a resolution of 0.010 cm?1. The analysis yields a number of constants, primarily B0 = 0.1897543 ± 0.0000061 cm?1 (standard error). This number is in perfect agreement with a value determined from a recent analysis of the ν1 Raman band.  相似文献   
10.
Femtosecond transient absorption spectroscopy is used to study the primary reaction dynamics of photoinduced electron detachment of the hydroxide ion in water, OH- (aq). The electron is detached by excitation of OH- (aq) to the charge-transfer-to-solvent (CTTS) state at 200 nm. The subsequent relaxation processes are probed in the spectral range from 193 to 800 nm with femtosecond time resolution. We determine both the time-dependent quantum yields of OH- (aq), OH(aq), and e-(aq), and we observe a transient spectral signature which is assigned to relaxation of hot (OH-)* ions formed via solvent-assisted conversion of the excited CTTS state to OH-. The primary quantum yield of OH(aq) is 65 +/- 5%, while recombination with e-(aq) reduces the yield to 34% after 5 ps and 12% after 200 ps. The yield of hot (OH-)* ions is 35 +/- 5%. Rotational anisotropy measurements of OH- (aq) and OH(aq) indicate a reorientation time for OH- (aq) of 1.9 ps, while no rotational anisotropy is resolved for the OH(aq) radical within our time resolution of 0.3 ps. This is consistent with the notion that OH(aq) radicals formed after electron detachment are only weakly bound to the hydrogen bond network of water. The assignment of the experimental data is supported by a series of electronic structure calculations of simple complexes of OH- (H(2)O)(n).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号