首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
  国内免费   1篇
化学   27篇
力学   5篇
综合类   1篇
数学   9篇
物理学   4篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2008年   7篇
  2007年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
2.
3.
Asbestos is a fiber causing lung diseases such as asbestosis and mesothelioma. Although the process involving these diseases remains to be elucidated for developing drugs and treatments, direct consequences of fiber exposure in humans have been clearly demonstrated. These diseases are first characterized by histological heterogeneity and combine chronic inflammation with fibrosis and cellular alterations. As a consequence, asbestosis is usually diagnosed at advanced stages of the disease and treatments are usually inefficient to cure the patients. Here, we review the links established between asbestos fiber chemistry and morphology with the occurrence of associated lung diseases. Cytological and histological aspects of diseases are described with respect to current analytical capabilities, notably for microscopy techniques.  相似文献   
4.
A chemoenzymatic access to thiol compounds, including ethyl 3-thiobutanoate, 3-thio-p-menthene and 8-thio-p-menthan-2-one, three compounds of interest in flavour and fragrance chemistry presenting various fruity notes, is proposed. It involves an indium(III)-catalysed hydrothioacetylation of renewable precursors followed by an enzymatic solvolysis of the obtained thioesters by lipases in aqueous or organic solvents.  相似文献   
5.
We present Lie symmetry analysis for investigating the shock‐wave structure of hyperbolic differential equations of polyatomic gases. With the application of symmetry analysis, we derive particular exact group invariant solutions for the governing system of partial differential equations (PDEs). In the next step, the evolutionary behavior of weak shock along with the characteristic shock and their interaction is investigated. Finally, the amplitudes of reflected wave, transmitted wave, and the jump in shock acceleration influenced by the incident wave after interaction are evaluated for the considered system of equations.  相似文献   
6.
In this paper, a novel Adomian decomposition method (ADM) is developed for the solution of Burgers' equation. While high level of this method for differential equations are found in the literature, this work covers most of the necessary details required to apply ADM for partial differential equations. The present ADM has the capability to produce three different types of solutions, namely, explicit exact solution, analytic solution, and semi-analytic solution. In the best cases, when a closed-form solution exists, ADM is able to capture this exact solution, while most of the numerical methods can only provide an approximation solution. The proposed ADM is validated using different test cases dealing with inviscid and viscous Burgers' equations. Satisfactory results are obtained for all test cases, and, particularly, results reported in this paper agree well with those reported by other researchers.  相似文献   
7.
Organic or inorganic colloids play a major role in the mobilization of trace elements in soils and waters. Environmental physicochemical parameters (pH, redox potential, temperature, pressure, ionic strength, etc.) are the controlling factors of the colloidal mobilization. This study was dedicated to follow the colloid-mediated mobilization of trace elements through time at the soil/water interface by means of an experimental approach. Soil column experiments were carried out using percolating synthetic solutions. The percolated solutions were ultrafiltrated with various decreasing cutoff thresholds to separate the different colloidal phases in which the dissolved organic carbon and trace element concentrations were measured. The major results which stem from this study are the following: (i) The data can be divided into different groups of organic compounds (microbial metabolites, fulvic acids, humic acids) with regard to their respective aromaticity and molecular weight. (ii) Three groups of elements can be distinguished based on their relationships with the colloidal phases: the first one corresponds to the so-called "truly" dissolved group (Li, B, K, Na, Rb, Si, Mg, Sr, Ca, Mn, Ba, and V). The second one can be considered as an intermediate group (Cu, Cd, Co, and Ni), while the third group gathers Al, Cr, U, Mo, Pb, Ti, Th, Fe, and rare earth elements (REE) carried by the organic colloidal pool. (iii) The data demonstrate that the fulvic acids seem to be a major organic carrier phase for trace elements such as Cu, Cd, Co, and Ni. By contrast, the trace elements belonging to the so-called colloidal pool were mostly mobilized by humic acids containing iron nanoparticles. Lead, Ti, and U were mobilized by iron nanoparticles bound to these humic acids. Thus, humic substances allowed directly or indirectly a colloidal transport of many insoluble trace elements either by binding trace elements or by stabilizing a ferric carrier phase. (iv) Finally, the results demonstrated also that REE were mostly mobilized by humic substances. The REE normalized patterns showed a middle REE downward concavity. Therefore, as previously shown elsewhere humic substances are a major control of REE speciation and REE fractionation patterns as well since the humic substance/metal ratio was the key parameter controlling the REE pattern shape.  相似文献   
8.
One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well‐established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of to produce conformations in increasing order of energy, we defined new strategies combining CFN lower bounds, with new side‐chain positioning‐based branching scheme. Beyond the speedups obtained in the new ‐CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. © 2016 Wiley Periodicals, Inc.  相似文献   
9.
Several push-pull oligocarbazole dye-sensitizers have been studied using theoretical methods in order to better understand the relationship between structural electronic or optical properties and intramolecular path of active electrons during the ionization and injection processes. DFT/TD-DFT calculations were performed on a series of five dye sensitizers. They differ by the presence of electron donating group (EDG) by inductive effect (noted+I) or electron releasing group (ERG) by mesomeric effect (noted+M) or electron withdrawing group by inductive effect (noted-I) on the pushed part of the dyes studied. Our work focused on the internal distribution of electrons in the different parts of dye that are the push/pull moieties and the π -bridge. The study concerned the ground state, the electronic transition process and the excited state. In each situation, the fragment acting in the ionization or transition phenomena were identified. In the ground state, the electrons of the push part appear to be the least bound because they have the highest probabilities of ionization. In the excited state, the ionized atoms are essentially positioned in the pushing part and some neighboring atoms of the bridge. In the electronic transition, the active atoms are located in the π -conjugated part but only on the side adjacent to the acceptor group. To arrive to this conclusion, we optimized the structures of the five dyes in their ground and excited states. We calculated the atomic charges, the wavelengths and intensities of electronic transitions in the visible domain, the reorganization energies as well as the oxidation potential. It appears that +M donor ligands improve the performance of a dye because the great distribution of atoms to be ionized in the push parts.  相似文献   
10.
We prove a bound for the geodesic diameter of a subset of the unit ball in ${\mathbb{R}^n}$ described by a fixed number of quadratic equations and inequalities, which is polynomial in n, whereas the known bound for general degree is exponential in n. Our proof uses methods borrowed from D’Acunto and Kurdyka (to deal with the geodesic diameter) and from Barvinok (to take advantage of the quadratic nature).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号