首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   2篇
力学   2篇
数学   1篇
  2021年   1篇
  2015年   1篇
  2012年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Summary. A finite element method to approximate the vibration modes of a structure in contact with an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of an added mass formulation, which is one of the most usual procedures in engineering practice. Gravity waves on the free surface of the liquid are also considered in the model. Piecewise linear continuous elements are used to discretize the solid displacements, the variables to compute the added mass terms and the vertical displacement of the free surface, yielding a non conforming method for the spectral coupled problem. Error estimates are settled for approximate eigenfunctions and eigenfrequencies. Implementation issues are discussed and numerical experiments are reported. In particular the method is compared with other numerical scheme, based on a pure displacement formulation, which has been recently analyzed. Received August 31, 1998 / Published online July 12, 2000  相似文献   
2.
Electrical-mechanical and mechanical-electrical coupling phenomena have been observed in geo-materials. Underlying internal phenomena are not always clear. In this paper, we identify potential microscale processes on the bases of previously published research; fundamental physical principles and analytical models are included. Second, we notice important inconsistencies between theoretically predicted values or high-frequency laboratory data with respect to low-frequency field observations. To explore these differences, we conduct a laboratory experimental study that simulates field conditions, placing emphasis on low frequency coupling, that is, less than 10 kHz. Both, mechanical-electrical and electrical-mechanical effects are observed. Finally, hypotheses are presented in an attempt to explain observed differences.  相似文献   
3.
The European Union is promoting regulatory changes to ban fungicides because of the impact their use has on the ecosystem and the adverse effects they can pose for humans. An ecofriendly alternative to these chemicals to fight against fungal species with low toxicity is essential oils and their compounds extracted from aromatic plants. The purpose of this study was to evaluate the in vitro antifungal capacity of the botanical compounds eugenol, carvacrol, thymol, and cinnamaldehyde, and the synergy or antagonism of their mixtures, against Botryotinia fuckeliana and Rhizoctonia solani. Different bioassays were performed at doses of 300, 200, 150, and 100 µg/mL using pure commercial compounds and their combination in potato dextrose agar culture medium. Growth rate and the mycelium growth inhibition parameters were calculated. Phenolic compounds and their combination inhibited the development of species at the different concentrations, with fungicidal or fungistatic activity shown under almost all the tested conditions. When comparing the growth rates of the species in the control plates and treatments, the statistical analysis showed that there were statistically significant differences. The mixture of compounds improved fungicidal activity against the studied species and at a lower concentration of monoterpenes.  相似文献   
4.
Diffusion is a slow transport mechanism and advective transport tends to dominate in large-size systems. An alternative transport mechanism is explored herein, whereby zero time-average cyclic fluid flow is compounded with pore-scale mixing to render effective transport. Two one-dimensional cyclic flow cases are analyzed: a rigid porous network with two open boundaries subjected to cyclic flow through, and a compressible porous network with only one open boundary subjected to cyclic compression. The corresponding analytical models predict diffusion-like macroscale response and provide explicit expressions for the effective diffusion coefficients in terms of the microstructure of the porous medium and flow conditions. A parallel experimental study is conducted to corroborate analytical predictions. Results confirm the relevance of pore-scale mixing in cyclic flow as a transport mechanism in porous networks.  相似文献   
5.
Chemical composition of commercial Origanum compactum and Cinnamomum zeylanicum essential oils and the antifungal activity against pathogenic fungi isolated from Mediterranean rice grains have been investigated. Sixty-one compounds accounting for more than 99.5% of the total essential oil were identified by using gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS). Carvacrol (43.26%), thymol (21.64%) and their biogenetic precursors p-cymene (13.95%) and γ-terpinene (11.28%) were the main compounds in oregano essential oil, while the phenylpropanoids, eugenol (62.75%), eugenol acetate (16.36%) and (E)-cinnamyl acetate (6.65%) were found in cinnamon essential oil. Both essential oils at 300 μg/mL showed antifungal activity against all tested strains. O. compactum essential oil showed the best antifungal activity towards Fusarium species and Bipolaris oryzae with a total inhibition of the mycelial growth. In inoculated rice grains at lower doses (100 and 200 μg/mL) significantly reduced the fungal infection, so O. compactum essential oil could be used as ecofriendly preservative for field and stored Valencia rice.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号