首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
化学   10篇
力学   13篇
数学   1篇
物理学   3篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2016年   4篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2004年   1篇
  1991年   1篇
  1989年   1篇
  1981年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
2.
Trace metals are required in the body as they play a significant role in several biochemical processes. Moreover, certain heavy metals are beneficial at appropriate levels. Copper (Cu), for example, is essential for red blood cell formation, bone strength, and infant growth. Despite these fundamental roles, Cu can become toxic at high levels. Other heavy metals such as lead (Pb), cadmium (Cd), manganese (Mn), and mercury (Hg), have been identified to cause acute and chronic health complications. For these reasons, rapid, real-time quantification of such metals in biological media is of interest to improving human health outcomes. Electrochemical methods offer numerous advantages, such as portability, capability to be miniaturized, low cost, and ease-of-use. In this review, we examine recent developments in electrochemical sensing for the detection of heavy metals in biological media. To meet the requirements for inclusion in this review, the electrochemical sensor must have been evaluated in biological media (blood, serum, sweat, saliva, urine, brain tissue/cells). Several applications are explored to examine recent advancements in electrochemical sensing within these matrices. Addressing the challenges through materials, device, and system innovations, it is expected that electrochemical sensing of heavy metals in biological media will facilitate future diagnoses and treatments in healthcare.  相似文献   
3.
Spectroelectrochemical sensors combine electrochemistry, spectroscopy, and partitioning into a film to provide improved selectivity for the target analyte. The sensor usually consists of an optically transparent electrode (OTE) coated with a charge selective polymer film. The polymer film is chosen to pre‐concentrate analyte at the OTE surface to improve the sensitivity and provide selectivity against like charged interferences. OTEs such as Indium Tin Oxide (ITO) have been used extensively for spectroelectrochemical sensors, but little is known about the applicability of such sensors using other OTE materials, such as Boron Doped Diamond (BDD). One distinct advantage of BDD OTEs over ITO OTEs is their significant increase in sensitivity for organic compounds, such as 4‐aminophenol and hydroquinone. We have developed absorption and fluorescence‐based sensing methods with a BDD OTE coated with a sulfonated ionomer film, Nafion. This is demonstrated with tris(2,2′‐bipyridyl)ruthenium(II) ion [Ru(bpy)32+] using an attenuated total reflectance (ATR) flow cell setup for both absorption and fluorescence. With a Nafion coated BDD optically transparent thin layer electrode (OTTLE), we developed a fluorescence based sensor for a common polyaromatic hydrocarbon (PAH), 1‐hydroxypyrene (1‐pyOH), achieving a detection limit of 80 nM (17 ppb). This work manifests new sensing applications while broadening the use of spectroelectrochemistry, OTEs, and BDD as an electrode material.  相似文献   
4.
This paper presents an experimental investigation on the perforation behaviour of 5754-H111 and 6082-T6 aluminium alloys. The mechanical response of these materials has been characterized in compression with strain rates in the range of $10^{-3}~s^{-1} < \dot {\varepsilon } < 5 \cdot 10^{3}~s^{-1}$ . Moreover, penetration tests have been conducted on 5754-H111 and 6082-T6 plates of $4~mm$ thickness using conical, hemispherical and blunt projectiles. The perforation experiments covered impact velocities in the range of $50~m/s < V_{0} < 200~m/s$ . The initial and residual velocities of the projectile were measured and the ballistic limit velocity obtained for the two aluminium alloys for the different nose shapes. Failure mode and post-mortem deflection of the plates have been examined and the perforation mechanisms associated to each projectile/target configuration investigated. It has been shown that the energy absorption capacity of the impacted plates is the result of the collective role played by target material behaviour, projectile nose shape and impact velocity in the penetration mechanisms.  相似文献   
5.
An optical model or complex potential has been used in a relatively simple fashion to provide an interpretation of several molecular dynamics experiments. Rather than attempting a quantitative curve fit to the available data using a phenomenological optical potential (which is certainly possible) we have correlated certain physically reasonable features of the complex potential with general trends in the reaction dynamics. As an explicit example, the relationship between the range characteristics of the optical potential and the dependence of the reaction probability upon the kinetic energy of the reactants is derived. Other correlations are also presented, such as the dependence of the reaction probability upon impact parameter and degree of rotational excitation. The power of such a treatment obviously lies in its general applicability to complex systems as well as in its ability to often provide a simple physical understanding of some rather anomalous features of the reaction dynamics.  相似文献   
6.
The aim of the study was to analyze the process of roasting coffee beans in a convection–conduction roaster (CC) without a heat exchanger and a convection–conduction–radiation roaster (CCR) with a heat exchanger for determination of the aroma profile. The aroma profile was analyzed using the SPME/GC-MS technique, and an Agrinose electronic nose was used to determine the aroma profile intensity. Arabica coffee beans from five regions of the world, namely, Peru, Costa Rica, Ethiopia, Guatemala, and Brazil, were the research material. The chemometric analyses revealed the dominance of azines, alcohols, aldehydes, hydrazides, and acids in the coffee aroma profile. Their share distinguished the aroma profiles depending on the country of origin of the coffee beans. The high content of pyridine from the azine group was characteristic for the coffee roasting process in the convection–conduction roaster without a heat exchanger, which was shown by the PCA analysis. The increased content of pyridine resulted from the appearance of coal tar, especially in the CC roaster. Pyridine has an unpleasant and bitter plant-like odor, and its excess is detrimental to the human organism. The dominant and elevated content of pyridine is a defect of the coffee roasting process in the CC roaster compared to the process carried out in the CCR machine. The results obtained with the Agrinose showed that the CC roasting method had a significant effect on the sensor responses. The effect of coal tar on the coffee beans resulted in an undesirable aroma profile characterized by increased amounts of aromatic volatile compounds and higher responses of Agrinose sensors.  相似文献   
7.
The paper concerns the so-called integration problem for the representation of a Lie algebra by operators (not necessarily bounded) acting in a Banach space. Some general assumptions have been admitted about resolvents of these operators.  相似文献   
8.
Calculations of effective diffusivities in three-dimensional, spatially periodic porous media are performed. For isotropic systems, it is found that, for a given porosity, the predicted value of the effective diffusivity matches experimental results for randomly-packed beds of spheres. Furthermore, the three-dimensional geometry yields approximately the same results as previous calculations employing two-dimensional representations, indicating a relative insensitivity of the effective diffusivity to local geometry. Regarding anisotropic systems, for which two-dimensional modes fail, it is found that there is a significant improvement in the prediction of the effective diffusivity perpendicular to the bedding plane when the three-dimensional model is employed using one adjustable parameter. However, the three-dimensional model overestimates the effective diffusivity parallel to the bedding plane.Notation a, b Geometric parameters (Figure 3) - c Solute concentration - D Diffusion coefficient - D eff Effective diffusivity tensor - E Dimensionless effective diffusivity, defined by Equation (3.1) - f Vector function, defined in Equation (2.8) - l Characteristic length of the pore scale - L Characteristic length of the macroscopic scale - L a , L b Geometric parameters (Figure 3) - n Unit vector perpendicular to the fluid-solid interface - r 0 Size of the averaging volume - t Time - t * Characteristic time - U Unit tensor - V Averaging volume Greek Letters Porosity - Parameter defined by Equation (3.4) Indices Fluid phase - Solid phase  相似文献   
9.
Four proton conducting oxides of perovskite structure: BaZrO3, SrZrO3, BaCeO3 and SrCeO3 doped with 5 mol.% of gadolinium are compared in terms of crystal structure, microstructure, sinterability, water sorption ability, ionic transference number, electrical conductivity and stability towards CO2. Relations between proton conductivity, structural and chemical parameters: pseudo-cubic unit cell volume, lattice free volume, tolerance factor, crystal symmetry and electronegativity are discussed. The grain boundary resistance is shown to be the limiting factor of total proton-conductivity for the materials examined. The highest proton conductivity was observed for BaCeO3, however, it turned out to be prone to degradation in CO2-containing atmosphere and reduction at high temperatures. On the other hand, Ba and Sr zirconates are found to be more chemically stable, but exhibit low electrical conductivity. Electrical conductivity relaxation upon hydration is used to calculate proton diffusion coefficient. Selected materials were tested as electrolytes in solid oxide fuel cells.   相似文献   
10.
This paper presents and analyzes the behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles. The relevance of this material resides in the potential transformation of retained austenite to martensite during impact loading. This process leads to an increase in strength and ductility of the material. However, this transformation takes place only under certain loading conditions strongly dependent on the initial temperature and deformation rate. In order to study the material behaviour under impact loading, perforation tests have been performed using a drop weight tower. Experiments were carried out at two different initial temperatures T0 = 213 K and T0 = 288 K, and within the range of impact velocities 2.5 m/s ? V0 ? 4.5 m/s. The experimental setup enabled the measuring of impact velocity, residual velocity, load-time history and failure mode. In addition, dry and lubricated contacts between the striker and the plate have been investigated. Finally, by using X-ray diffraction it has been shown that no martensitic transformation takes place during the perforation process. The causes involving the none-appearance of martensite are examined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号