首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   1篇
力学   9篇
数学   1篇
  2019年   1篇
  2012年   2篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2002年   2篇
  1998年   1篇
  1995年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Two-dimensional on-line particle imaging velocimetry   总被引:3,自引:0,他引:3  
A high-performance algorithm is described for the on-line computation of two-dimensional velocity maps using particle displacement imaging. It relies on the computation of direct correlations in a multiple-scale spatial hierarchy. Layered rejection criteria based on correlation quality and conditional averaging techniques are employed to achieve the robustness required for continuous, unsupervised operation. Implementations are described using a UNIX-based workstation and a DOS-based personal computer with a real-time image processing/correlator subsystem. The cooperation of the algorithm with other real-time visualization techniques is demonstrated using the example of colour-coded streak integration.The authors wish to thank Dr. Philippe Georis of the Université Libre de Bruxelles (ULB) for making available to us video sequences of his Marangoni convection experiment.  相似文献   
2.
Doppler Global Velocimetry (DGV) is an imaging flow measurement technique which allows the measurement of the velocity distribution in a plane. In DGV the frequency shift of scattered light from moving particles within the flow is used to determine the local flow velocity. Heterodyne Doppler Global Velocimetry (HDGV) is a new approach which combines the imaging and geometrical characteristics of DGV with the measurement principles of reference beam laser Doppler anemometry. The frequency shifted scattered light from the flow tracers is heterodyned with a reference beam from the same light source. Due to interference the result of this superposition is a harmonic intensity modulated signal. This signal is detected using a smart pixel detector array to obtain the velocity distribution. Two different experiments are presented. The first experiment compares the measured velocity distribution of a rotating disk with its actual velocity. The second experiment demonstrates the capability of the technique to measure a real flow.  相似文献   
3.
The recent development in measuring 2D Doppler shift distributions for flow velocimetry using the dispersive properties of atomic line filters is presented. On the basis of velocity field measurements on a subsonic jet flow and a tip vortex flow in a medium-sized wind tunnel, the technique was assessed. Atomic line filters near a resonant transition combine imaging capabilities with a sharp frequency cutoff and an associated region of strong anomalous dispersion. While conventional Doppler global velocimetry relies on the absorption of the filter to convert frequency shifts to intensity variations, near-resonant interferometry uses its dispersion to detect frequency shifts as phase changes in an interference pattern. In the present setup, an iodine vapor cell in an imaging Michelson interferometer is used. With the illuminating laser frequency tuned near a resonant transition, the cell’s dispersion converts the frequency content of the field of view into a distortion of the carrier-fringe pattern recorded at the image plane of the interferometer. The phase distribution in the fringe images is reconstructed by filtering the individual images with a 2D Gabor filter pair tuned to the spatial frequencies of the basic carrier-fringe pattern. The post-processing is concluded with subsequent phase-unwrapping and subtraction of the carrier reference fringe phase. The method and the setup were demonstrated and calibrated experimentally on a rotating disc. The capability of the technique to operate in a real experimental environment was validated in a free subsonic jet and a tip vortex flow behind a wing section in a medium-sized wind tunnel facility. The measurements were found to be in generally good agreement with the theoretically predicted system characteristics and the reference measurements. As with other Doppler global techniques, the stability of the pulsed laser system and the secondary scattering in the test volume were identified as the main error sources.  相似文献   
4.
Mass Spectrometry (MS) has been widely reported for measuring the conversion of substrates to products for enzyme assays. These measurements are typically performed by time-consuming LC-MS to eliminate buffer salts that interfere with electrospray ionization MS. However, matrix-assisted laser desorption ionization, time-of-flight MS (MALDI-TOF MS) offers a label-free and direct readout of substrate and product, a fast sampling rate, and is tolerant of many buffer salts, reagents, and compounds that are typically found in enzyme reaction mixtures. In this report, a demonstration of how MALDI-TOF MS can be used to directly measure ratios of substrates and products to produce IC(50) curves for rapid enzyme assays and compound screening is provided. Typical reproducibility parameters were <7% RSD-a value comparable to ESI MS quantitative assays and well within the acceptable limits for screening assays. The speed of the MALDI readout is currently about 10 s per sample, thus allowing for over 7500 samples/day. From a simplicity standpoint, the enzymatic reaction mixtures are prepared by liquid handling robots, the reactions are stopped by addition of a 10 times volume of acidic matrix solution, and the samples are simultaneously transferred to MALDI target plate for analysis. Importantly, the ratios of substrate to product are of sufficient reproducibility to eliminate the need for internal standards and, thus, minimize the cost and increasing the speed of assay development.  相似文献   
5.
A novel pressure measurement technique is presented for wireless recording of time-averaged surface pressure distributions in wind tunnel surveys. An array of silicon micro-plate resonators acts as pressure sensing element. The pressure is recorded by measuring the sensor diaphragms’ resonance frequency using optical interferometry. Dependent on the quasi-static deflection caused by a pressure load, the resonance frequency varies with an average pressure sensitivity of 3 Hz/Pa in a frequency range between 30 and 150 kHz. A smart-pixel CMOS camera, narrow-band acoustic noise excitation and a specific sensor surface structure allow for the interrogation of a large number of sensors in parallel without the need for alignment between sensor and detector. Experimental tests reveal increased sensing performance with acoustic excitation of the higher vibration modes.  相似文献   
6.
Seeding of high temperature air flows is problematic because common seeding materials can ignite and may pose a threat for human health in case of inhalation. Sodium chloride is proposed as a seeding material to avoid these problems. The generation of crystals using an ultrasonic atomizer is described and the measured particle size distribution is presented. The described method has the additional advantage that the particle size can easily be adjusted. This allows the operator to comply with the experimental requirements in terms of resolvable frequencies. The described method has been successfully applied to LDA measurements in a 500°C air flow.  相似文献   
7.
Transport in Porous Media - Fractures are conduits that can enable fast advective transfer of (fluid, solute, reactant, particle, etc.) mass and energy. Such fast transfer can significantly affect...  相似文献   
8.
O. Jensen  J.P. Kunsch  T. Roesgen 《PAMM》2002,1(1):252-253
The propagation and dilution behaviour of cryogenic clouds in a heavy‐gas channel is studied by Particle Image Velocimetry (PIV) measurements. Ice particles are used as tracer particles for the flow. These particles are generated automatically during the evaporation of the liquid nitrogen in a release chamber used for generation of the cloud. The density of the seeding is controlled by changing the evaporation conditions during the startup phase. The measurements conducted so far result in detailed velocity vector maps and show clearly a vortex forming in the vicinity of the first backward facing step  相似文献   
9.
Imaging laser Doppler velocimetry (ILDV) is a novel flow measurement technique, which enables the measurement of the velocity in an imaging plane. It is an evolution of heterodyne Doppler global velocimetry (HDGV) and may be regarded as the planar extension of the classical dual-beam laser Doppler velocimetry (LDV) by crossing light sheets in the flow instead of focused laser beams. Seeding particles within the flow are illuminated from two different directions, and the light scattered from the moving particles exhibits a frequency shift due to the Doppler effect. The frequency shift depends on the direction of the illumination and the velocity of the particle. The superposition of the two different frequency-shifted signals on the detector creates interference and leads to an amplitude modulated signal wherein the modulation frequency depends on the velocity of the particle. This signal is detected using either a high-speed camera or alternatively a smart pixel imaging array. This detector array performs a quadrature detection on each pixel with a maximum demodulation frequency of 250 kHz. To demonstrate the feasibility of the technique, two experiments are presented: The first experiment compares the measured velocity distribution of a free jet using ILDV performed with the smart pixel detector array and a high-speed camera with a reference measurement using PIV. The second experiment shows an advanced setup using two smart pixel detector arrays to measure the velocity distribution on a rotating disk, demonstrating the potential of the technique for high-velocity flow measurements.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号