首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   4篇
化学   30篇
力学   1篇
数学   3篇
物理学   9篇
  2022年   1篇
  2021年   2篇
  2019年   4篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   5篇
  2011年   6篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2001年   2篇
  1996年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
2.
Macrocyclic furans are predicted to switch between global aromaticity and antiaromaticity, depending on their oxidation states. However, the macrocyclic furans reported to date are stabilized by electron withdrawing groups, which result in inaccessible oxidation states. To circumvent this problem, a post-macrocyclization approach was applied to introduce methylene-substituted macrocyclic furans, which display an extremely low oxidation potential of −0.23 vs. Fc/Fc+, and are partially oxidized in ambient conditions. Additional oxidation to the dication results in aromaticity switching to a global 30πe aromatic state, as indicated by the formation of a strong diatropic current observed in the 1H NMR spectrum. NICS and ACID calculations support this trend and provide evidence for a different pathway for the global current in the neutral and dicationic states. According to these findings, macrocyclic furans can be rendered as promising p-type materials with stable oxidation states.  相似文献   
3.
A method for implementing a secret sharing scheme at the molecular level is presented. By creating molecular code generators that are self‐assembled from several molecular components, we established a means for distributing distinct code‐activating elements among several participants. In this way, an authorization code can only be generated when all the participants are present, which ensures that highly secured systems cannot be operated by unauthorized individuals or disloyal users. Additional layers of protection result from the ability to program the security code by replacing one or several molecular components and by subjecting the system to distinct chemical inputs.  相似文献   
4.
We report a C?C bond‐forming reaction between benzyl alcohols and alkynes in the presence of a catalytic amount of KOtBu to form α‐alkylated ketones in which the C=O group is located on the side derived from the alcohol. The reaction proceeds under thermal conditions (125 °C) and produces no waste, making the reaction highly atom efficient, environmentally benign, and sustainable. Based on our mechanistic investigations, we propose that the reaction proceeds through radical pathways.  相似文献   
5.
The sustainable, selective direct hydroxylation of arenes, such as benzene to phenol, is an important research challenge. An electrocatalytic transformation using formic acid to oxidize benzene and its halogenated derivatives to selectively yield aryl formates, which are easily hydrolyzed by water to yield the corresponding phenols, is presented. The formylation reaction occurs on a Pt anode in the presence of [CoIIIW12O40]5? as a catalyst and lithium formate as an electrolyte via formation of a formyloxyl radical as the reactive species, which was trapped by a BMPO spin trap and identified by EPR. Hydrogen was formed at the Pt cathode. The sum transformation is ArH+H2O→ArOH+H2. Non‐optimized reaction conditions showed a Faradaic efficiency of 75 % and selective formation of the mono‐oxidized product in a 35 % yield. Decomposition of formic acid into CO2 and H2 is a side‐reaction.  相似文献   
6.
In a strategy to develop more stable ultrasound contrast agents (UCAs), we have designed a process to obtain nano/microcapsules with a single core of liquid perfluorocarbon within a biodegradable polymeric shell of homogeneous thickness. During the optimization of perfluorooctyl bromide (PFOB) encapsulation by solvent emulsion-evaporation, a marked influence of surfactants has been observed. While sodium cholate leads to spherical capsules of homogeneous thickness, sodium taurocholate induces to the formation of “acorn”-particles with one hemisphere of PFOB and another one of PLGA, and polyvinyl alcohol is responsible for the coexistence of both morphologies. Whereas the theoretical model proposed by Torza and Mason [J. Colloid Interface Sci. 33 (1970) 67] fails to predict the observed morphologies, microscopic observations of the evaporation and interfacial tension measurements provide an insight into the mechanism of formation of these structures. Most probably, there is a competition between PLGA and the surfactant stabilizing the emulsion at the dichloromethane–water interface. If PLGA is able to adsorb at the interface, the core–shell morphology is obtained, otherwise the acorn morphology is preferentially formed. When the surfactant rearrangement at the interface is long (>30 min), a coexistence of morphologies can be obtained.  相似文献   
7.
Two redox-active bistable [2]catenanes composed of macrocyclic polyethers of different sizes incorporating both electron-rich 1,5-dioxynaphthalene (DNP) and electron-deficient 4,4'-bipyridinium (BIPY(2+)) units, interlocked mechanically with the tetracationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)), were obtained by donor-acceptor template-directed syntheses in a threading-followed-by-cyclization protocol employing Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloadditions in the final mechanical-bond forming steps. These bistable [2]catenanes exemplify a design strategy for achieving redox-active switching between two translational isomers, which are driven (i) by donor-acceptor interactions between the CBPQT(4+) ring and DNP, or (ii) radical-radical interactions between CBPQT(2(?+)) and BIPY(?+), respectively. The switching processes, as well as the nature of the donor-acceptor interactions in the ground states and the radical-radical interactions in the reduced states, were investigated by single-crystal X-ray crystallography, dynamic (1)H NMR spectroscopy, cyclic voltammetry, UV/vis spectroelectrochemistry, and electron paramagnetic resonance (EPR) spectroscopy. The crystal structure of one of the [2]catenanes in its trisradical tricationic redox state provides direct evidence for the radical-radical interactions which drive the switching processes for these types of mechanically interlocked molecules (MIMs). Variable-temperature (1)H NMR spectroscopy reveals a degenerate rotational motion of the BIPY(2+) units in the CBPQT(4+) ring for both of the two [2]catenanes, that is governed by a free energy barrier of 14.4 kcal mol(-1) for the larger catenane and 17.0 kcal mol(-1) for the smaller one. Cyclic voltammetry provides evidence for the reversibility of the switching processes which occurs following a three-electron reduction of the three BIPY(2+) units to their radical cationic forms. UV/vis spectroscopy confirms that the processes driving the switching are (i) of the donor-acceptor type, by the observation of a 530 nm charge-transfer band in the ground state, and (ii) of the radical-radical ilk in the switched state as indicated by an intense visible absorption (ca. 530 nm) and near-infrared (ca. 1100 nm) bands. EPR spectroscopic data reveal that, in the switched state, the interacting BIPY(?+) radical cations are in a fast exchange regime. In general, the findings lay the foundations for future investigations where this radical-radical recognition motif is harnessed in bistable redox-active MIMs in order to achieve close to homogeneous populations of co-conformations in both the ground and switched states.  相似文献   
8.
9.
We study one dimensional sets (Hausdorff dimension) lying in a Hilbert space. The aim is to classify subsets of Hilbert spaces that are contained in a connected set of finite Hausdorff length. We do so by extending and improving results of Peter Jones and Kate Okikiolu for sets in ℝd. Their results formed the basis of quantitative rectifiability in ℝd. We prove a quantitative version of the following statement: a connected set of finite Hausdorff length (or a subset of one), is characterized by the fact that inside balls at most scales aroundmost points of the set, the set lies close to a straight line segment (which depends on the ball). This is done via a quantity, similar to the one introduced in [Jon90], which is a geometric analogue of the Square function. This allows us to conclude that for a given set K, the ℓ2 norm of this quantity (which is a function of K) has size comparable to a shortest (Hausdorff length) connected set containing K. In particular, our results imply that, with a correct reformulation of the theorems, the estimates in [Jon90, Oki92] are independent of the ambient dimension.  相似文献   
10.
The controlled self‐assembly of well‐defined and spatially ordered π‐systems has attracted considerable interest because of their potential applications in organic electronics. An important contemporary pursuit relates to the investigation of charge transport across noncovalently coupled components in a stepwise fashion. Dynamic oligorotaxanes, prepared by template‐directed methods, provide a scaffold for directing the construction of monodisperse one‐dimensional assemblies in which the functional units communicate electronically through‐space by way of π‐orbital interactions. Reported herein is a series of oligorotaxanes containing one, two, three and four naphthalene diimide (NDI) redox‐active units, which have been shown by cyclic voltammetry, and by EPR and ENDOR spectroscopies, to share electrons across the NDI stacks. Thermally driven motions between the neighboring NDI units in the oligorotaxanes influence the passage of electrons through the NDI stacks in a manner reminiscent of the conformationally gated charge transfer observed in DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号